摘要:
The natural gas arriving through pipe 1 is deacidified by being brought into contact with a solvent in zone C. The solvent charged with acid compounds is regenerated in zone R. The acid gases, released into pipe 5 upon regeneration, include a quantity of solvent. The method enables the solvent contained in the acid gases to be extracted. In zone ZA, the acid gases are brought into contact with a non-aqueous ionic liquid whose general formula is Q+ A−, where Q+ designates an ammonium, phosphonium, and/or sulfonium cation, and A− designates an anion able to form a liquid salt. The solvent is removed from the acid gases evacuated through pipe 6. The ionic liquid charged with solvent is regenerated by heating in an evaporator DE. The ionic liquid regenerated is recycled through pipes 8 and 9 to zone ZA. The solvent is evacuated through pipe 13.
摘要:
The natural gas arriving through pipe 1 is deacidified by being brought into contact with a solvent in column C2. The solvent charged with acid compounds is regenerated in zone R. The purified gas evacuated by pipe 9 includes some of the solvent. The method enables the solvent contained in the purified gas to be extracted. In zone ZA, the purified gas is brought into contact with a non-aqueous ionic liquid whose general formula is Q+ A−, where Q+ designates an ammonium, phosphonium, and/or sulfonium cation, and A− designates an anion able to form a liquid salt. The solvent-impoverished purified gas is evacuated through pipe 17. The ionic liquid charged with solvent is regenerated by heating in an evaporator DE. The solvents separated from the ionic liquid in evaporator DE are recycled.
摘要:
The method enables the antihydrate compounds contained in a condensed-hydrocarbon liquid feedstock arriving through pipe 1 to be extracted. The liquid feedstock is brought into contact, in zone ZA, with a non-aqueous ionic liquid having the general formula Q+ A31 , where Q+ designates an ammonium, phosphonium, and/or sulfonium cation, and A31 designates an anion able to form a liquid salt. The antihydrate compounds in the liquid hydrocarbon feedstock evacuated through pipe 2 are eliminated. The ionic liquid charged with antihydrate compounds is evacuated through pipe 3, then introduced into evaporator DE to be heated in order to evaporate the antihydrate compounds. The regenerated ionic liquid is recycled through pipes 8 and 9 to zone ZA. The antihydrates are evacuated through pipe 7a.
摘要:
The combustion fume flowing in through line 1 is decarbonated by contacting with a solvent in column C2. The solvent laden with carbon dioxide is regenerated in zone R. The purified fume discharged through line 9 comprises part of the solvent. The method allows to extract the solvent contained in the purified fume. The purified fume is contacted in zone ZA with a non-aqueous ionic liquid of general formula Q+ A−; Q+ designates an ammonium, phosphonium and/or sulfonium cation, and A− an anion likely to form a liquid salt. The solvent-depleted purified fume is discharged through line 17. The solvent-laden ionic liquid is regenerated by heating in evaporation device DE. The solvent separated from the ionic liquid in device DE is recycled.
摘要:
The method enables the antihydrate compounds contained in a condensed-hydrocarbon liquid feedstock arriving through pipe 1 to be extracted. The liquid feedstock is brought into contact, in zone ZA, with a non-aqueous ionic liquid having the general formula Q+ A31 , where Q+ designates an ammonium, phosphonium, and/or sulfonium cation, and A31 designates an anion able to form a liquid salt. The antihydrate compounds in the liquid hydrocarbon feedstock evacuated through pipe 2 are eliminated. The ionic liquid charged with antihydrate compounds is evacuated through pipe 3, then introduced into evaporator DE to be heated in order to evaporate the antihydrate compounds. The regenerated ionic liquid is recycled through pipes 8 and 9 to zone ZA. The antihydrates are evacuated through pipe 7a.
摘要:
The combustion fume flowing in through line 1 is decarbonated by contacting with a solvent in column C2. The solvent laden with carbon dioxide is regenerated in zone R. The purified fume discharged through line 9 comprises part of the solvent. The method allows to extract the solvent contained in the purified fume. The purified fume is contacted in zone ZA with a non-aqueous ionic liquid of general formula Q+ A−; Q+ designates an ammonium, phosphonium and/or sulfonium cation, and A− an anion likely to form a liquid salt. The solvent-depleted purified fume is discharged through line 17. The solvent-laden ionic liquid is regenerated by heating in evaporation device DE. The solvent separated from the ionic liquid in device DE is recycled.
摘要:
The natural gas arriving through pipe 1 is deacidified by being brought into contact with a solvent in zone C. The solvent charged with acid compounds is regenerated in zone R. The acid gases, released into pipe 5 upon regeneration, include a quantity of solvent. The method enables the solvent contained in the acid gases to be extracted. In zone ZA, the acid gases are brought into contact with a non-aqueous ionic liquid whose general formula is Q+ A−, where Q+ designates an ammonium, phosphonium, and/or sulfonium cation, and A− designates an anion able to form a liquid salt. The solvent is removed from the acid gases evacuated through pipe 6. The ionic liquid charged with solvent is regenerated by heating in an evaporator DE. The ionic liquid regenerated is recycled through pipes 8 and 9 to zone ZA. The solvent is evacuated through pipe 13.
摘要:
The natural gas arriving through pipe 1 is deacidified by being brought into contact with a solvent in column C2. The solvent charged with acid compounds is regenerated in zone R. The purified gas evacuated by pipe 9 includes some of the solvent. The method enables the solvent contained in the purified gas to be extracted. In zone ZA, the purified gas is brought into contact with a non-aqueous ionic liquid whose general formula is Q+ A−, where Q+ designates an ammonium, phosphonium, and/or sulfonium cation, and A− designates an anion able to form a liquid salt. The solvent-impoverished purified gas is evacuated through pipe 17. The ionic liquid charged with solvent is regenerated by heating in an evaporator DE. The solvents separated from the ionic liquid in evaporator DE are recycled.
摘要:
The present invention relates to a method of deacidizing a gaseous effluent comprising at least one of the acid compounds as follows: H2S, mercaptans, CO2, COS, SO2, CS2, wherein the following stages are carried out: a) contacting the acid compounds contained in said effluent with reactive compounds forming a liquid, so as to obtain a gaseous effluent depleted in acid compounds and a first liquid fraction comprising products formed by reaction of the reactive compounds with acid compounds, and reactive compounds that did not react with acid compounds, b) contacting said products contained in the first liquid fraction with extraction compounds forming a second liquid fraction so as to obtain a product-depleted first liquid fraction and a product-enriched second liquid fraction, c) recycling to stage a) the first liquid fraction obtained in stage b), said first liquid fraction obtained making up at least part of said liquid, d) regenerating the second liquid fraction obtained in stage b) so as to release acid compounds in gaseous form and to obtain a mixture of reactive compounds and of extraction compounds.
摘要:
The invention describes a process for the selective dimerization of ethylene to but-1-ene using a catalytic composition comprising at least one organometallic titanium complex, said organometallic complex containing at least one alkoxy type ligand functionalized by a heteroatom selected from nitrogen, oxygen, phosphorus, sulphur, arsenic and antimony or by an aromatic group.