摘要:
A method for processing a gas containing at least hydrogen sulfide (H2S) and at least sulfur dioxide (SO2), includes the following stages: contacting the gas with a liquid solvent containing at least one catalyst in a contacting stage, recovering a gaseous effluent substantially containing no hydrogen sulfide and no sulfur dioxide, and a mixture containing liquid sulfur, liquid solvent and solid by-products resulting from the degradation of the catalyst, separating the liquid sulfur from the liquid solvent in a decantation zone, extracting a liquid fraction F containing at least the solid by-products from a layer between the liquid solvent and the liquid sulfur in the decantation zone, sending the liquid fraction F to a processing stage distinct from the contacting stage, and recovering at least a stream F1 comprising most of the solid by-products and a stream F2 mostly comprising solvent nearly free of the solid by-products from the processing stage.
摘要:
The natural gas arriving through pipe 1 is deacidified by being brought into contact with a solvent in zone C. The solvent charged with acid compounds is regenerated in zone R. The acid gases, released into pipe 5 upon regeneration, include a quantity of solvent. The method enables the solvent contained in the acid gases to be extracted. In zone ZA, the acid gases are brought into contact with a non-aqueous ionic liquid whose general formula is Q+ A−, where Q+ designates an ammonium, phosphonium, and/or sulfonium cation, and A− designates an anion able to form a liquid salt. The solvent is removed from the acid gases evacuated through pipe 6. The ionic liquid charged with solvent is regenerated by heating in an evaporator DE. The ionic liquid regenerated is recycled through pipes 8 and 9 to zone ZA. The solvent is evacuated through pipe 13.
摘要:
A method for processing a gas containing at least hydrogen sulfide (H2S) and at least sulfur dioxide (SO2), includes the steps of contacting the gas with a liquid solvent containing at least one catalyst in a contacting stage, recovering gaseous effluent substantially containing no hydrogen sulfide and no sulfur dioxide from the contacting stage, and separating liquid sulfur from liquid solvent in a decantation zone downstream of the contacting stage. In order to remove by-products resulting from degradation of the catalyst, a liquid fraction F containing at least solvent, catalyst, sulfur and the solid by-products resulting from degradation of the catalyst is extracted from after the contacting stage. The liquid fraction F is sent to a processing stage distinct from the contacting stage where the liquid fraction F is heated to a temperature at least partially crystallizing the by-products, and the at least partially crystallized by-products separated from the rest of the liquid fraction F containing at least solvent. At least a stream F1 comprising solvent, catalyst and sulfur and substantially free of the by-products and a stream F2 mostly comprising the by-products are recovered.
摘要:
In the desulfurization of a gaseous feed containing hydrogen sulfide, comprising contacting the gaseous feed with a catalytic solution containing a chelated polyvalent metal under suitable conditions for oxidation of the hydrogen sulfide to elementary sulfur and concomitant reduction of the chelated polyvalent metal from a higher oxidation level to a lower oxidation level, recovering a gaseous effluent substantially freed from hydrogen sulfide, and a catalytic solution at least partly reduced and containing elementary sulfur, separating the solid elementary sulfur from the reduced catalytic solution, and regenerating the reduced catalytic solution by contacting the catalytic solution with a gas containing oxygen by means of an ejector.
摘要:
The natural gas arriving through pipe 1 is deacidified by being brought into contact with a solvent in column C2. The solvent charged with acid compounds is regenerated in zone R. The purified gas evacuated by pipe 9 includes some of the solvent. The method enables the solvent contained in the purified gas to be extracted. In zone ZA, the purified gas is brought into contact with a non-aqueous ionic liquid whose general formula is Q+ A−, where Q+ designates an ammonium, phosphonium, and/or sulfonium cation, and A− designates an anion able to form a liquid salt. The solvent-impoverished purified gas is evacuated through pipe 17. The ionic liquid charged with solvent is regenerated by heating in an evaporator DE. The solvents separated from the ionic liquid in evaporator DE are recycled.
摘要:
The method enables the antihydrate compounds contained in a condensed-hydrocarbon liquid feedstock arriving through pipe 1 to be extracted. The liquid feedstock is brought into contact, in zone ZA, with a non-aqueous ionic liquid having the general formula Q+ A31 , where Q+ designates an ammonium, phosphonium, and/or sulfonium cation, and A31 designates an anion able to form a liquid salt. The antihydrate compounds in the liquid hydrocarbon feedstock evacuated through pipe 2 are eliminated. The ionic liquid charged with antihydrate compounds is evacuated through pipe 3, then introduced into evaporator DE to be heated in order to evaporate the antihydrate compounds. The regenerated ionic liquid is recycled through pipes 8 and 9 to zone ZA. The antihydrates are evacuated through pipe 7a.
摘要:
The combustion fume flowing in through line 1 is decarbonated by contacting with a solvent in column C2. The solvent laden with carbon dioxide is regenerated in zone R. The purified fume discharged through line 9 comprises part of the solvent. The method allows to extract the solvent contained in the purified fume. The purified fume is contacted in zone ZA with a non-aqueous ionic liquid of general formula Q+ A−; Q+ designates an ammonium, phosphonium and/or sulfonium cation, and A− an anion likely to form a liquid salt. The solvent-depleted purified fume is discharged through line 17. The solvent-laden ionic liquid is regenerated by heating in evaporation device DE. The solvent separated from the ionic liquid in device DE is recycled.
摘要:
A process intended for desulfurization of a gaseous feed containing hydrogen sulfide, includes at least the following stages: a) contacting the gaseous feed with a catalytic solution containing at least one polyvalent metal chelated by at least one chelating agent, under suitable conditions for oxidation of the hydrogen sulfide to elemental sulfur and concomitant reduction of the polyvalent metal from a higher oxidation level to a lower oxidation level, b) recovering on the one hand a gaseous effluent substantially freed from hydrogen sulfide and, on the other hand, the catalytic solution at least reduced and containing elemental sulfur, and c) recycling at least a fraction F1 of the catalytic solution at least reduced and containing solid elemental sulfur to absorption stage a) so as to reduce the number of sulfur grains of very small size.
摘要:
A method for processing a gas, such as a Claus tail gas, containing at least hydrogen sulfide (H2S) and at least sulfur dioxide (SO2), includes the steps of contacting the gas with a liquid solvent, such as polyethylene glycol, containing at least one catalyst, such as sodium salicylate, in a contacting stage, recovering gaseous effluent substantially containing no hydrogen sulfide and no sulfur dioxide from the contacting stage, and separating liquid sulfur from liquid solvent in a decantation zone beneath the contacting stage. In order to remove by-products, such as sulfate and thiosulfate salts, resulting from degradation of the catalyst, a liquid fraction F containing at least solvent, catalyst, sulfur and the solid by-products resulting from degradation of the catalyst is extracted from the contacting stage and sent to a processing stage distinct from the contacting stage where the liquid fraction F is heated to a temperature sufficient to at least partially crystallize the by-products, and the crystallized by-products are separated from the rest of the liquid fraction F containing at least solvent. At least a stream F1 comprising solvent, catalyst and sulfur and substantially free of the by-products and a stream F2 mostly comprising the by-products are recovered.