Abstract:
A nanopore reactive adsorbent composite material, which may be a porous adsorbent, has a composition and microstructure, which integrates adsorbency, reactivity and catalysis. Integration may be achieved by modifying nanopore surfaces with dense ligand groups and by embedding at least one reactant phase effective to accomplish a sequence of reactions of which at least one reaction may be catalyzed by the surface ligand groups. The solid reactant phase may include reactive metal particles, such as, Mg, Sn, Al, Fe, or Zn, or mixtures thereof, and may be effective as in-situ reducing agent. A macroporous adsorbent, may be formed from the composite material. Recovery of mercury from a contaminated liquid is described. A second reactive phase, which may comprise a sulfur polymer or another metal effective to immobilize liquid mercury in-situ, may be included in or with the composite.
Abstract:
An engineered nano-composite coating may include hydrophobic an hydrophilic domains, may be applied to transparent and non-transparent substrates using a continuous process, may be UV curable and may impart antifogging characteristics to the substrate.
Abstract:
This invention relates to the field of thermal insulation. In particular, the invention describes superinsulation articles having a desired porosity, reduced pore size and cost-effective methods for manufacturing such articles. In one aspect of the present invention, the article may comprise a material system with at least about 20% porosity. In a further aspect of the invention, an article may comprise greater than about 25% of nanopores having a pore size no greater than about 1500 nanometers in its shortest axis.
Abstract:
Compositions for transporting L-asparaginase across the cellular membrane of erythrocytes, comprising a low molecular weight protamine peptide. Process of preparation of compositions comprising conjugates of L-asparaginase and a low molecular weight protamine peptide. Method of treatment comprising administration of adapted L-asparaginase is also described.
Abstract:
This invention relates to the field of thermal insulation. In particular, the invention describes superinsulation articles having a desired porosity, reduced pore size and cost-effective methods for manufacturing such articles. In one aspect of the present invention, the article may comprise a material system with at least about 20% porosity. In a further aspect of the invention, an article may comprise greater than about 25% of nanopores having a pore size no greater than about 1500 nanometers in its shortest axis.
Abstract:
An engineered nano-composite coating may include hydrophobic an hydrophilic domains, may be applied to transparent and non-transparent substrates using a continuous process, may be UV curable and may impart antifogging characteristics to the substrate.