摘要:
Systems and methods that enable digital video compression techniques to manage and control artifact presence in each compressed frame of the video clip. Wherein specific embodiments are applicable to interframe and intraframe video compression methods and can be used in the compression of digital images and digital video clips. Other embodiments are employable in digital video compression and are applicable to interframe compression methods. A mechanism to increase the amount of video compression, while maintaining video quality that may otherwise be sacrificed with such increases in video compression, by threshold value management to accommodate the human eye's ability to more readily discern local image features or artifacts at central image locations or focused-upon areas, while tolerating, to a greater extent, artifacts dispersed elsewhere in the image.
摘要:
A method of quantitatively measuring fidelity of a reproduced image reconstructed from a compressed data representation of an original image is disclosed. The method comprises, responsive to user selection, for establishing a global assessment mode or a local assessment mode. In the global assessment mode changes in luminance of the reproduced image from the original image and changes in color in first and second color difference values of the reproduced image from the original image are used score fidelity. Changes in luminance are measured using a dynamic range, nonlinear transform equation. In the local assessment mode, and responsive to user selection, the reproduced image and the original image are segmented and corresponding pairs of segments from the reproduced image and the original image are identified. Scoring of fidelity of the reproduced image to the original image is done by comparing corresponding pairs of segments in color, luminance, shape, displacement and texture.
摘要:
A method of converting a digital video signal having a luminance component for each pixel of a frame and two color difference components for contiguous groups of pixels in the frame into a video signal having three color components for each pixel is disclosed. Two color lookup tables are provided, each being indexed by a combination of the luminance level for a pixel and a color difference component for the group including the pixel. Entries in each color lookup table include a component value for one color and a subcomponent contributing to a component value for another color. The method provides combining the luminance components and color difference components for each pixel represented in the compressed digital video signal to retrieve the color component values for the three color video signal. Two colors are extracted directly from the lookup tables. The third color component is generated by combining subcomponent values extracted from the tables.
摘要:
A frame-differencing based method for coding and decoding color video data suitable for real-time, software-only based decompression and playback in low-end personal computers wherein the computational demands required of a computer microprocessor to implement the method are readily met by microprocessors such as an Intel 80386SX microprocessor running at 16 Mhz. Frame-to-frame differences are detected in a manner analogous to human perception of luminance data, rather than by the differences in the actual numerical video data. This permits greater compression of data without added computational complexity to the decompression process. Image analysis techniques are employed to ameliorate the appearance of the video. A lossless coding method that unifies two separate compressed data entities is used to obtain a greater amount of compression and simultaneously to reduce the computational complexity of the decompression process.
摘要:
A process for coding a plurality of compressed video data streams in a time ordered sequence. Each compressed data stream includes coding of frame to frame differences of a video segment, which are represented as a compressed M.times.N exclusive-OR plane of pixel change values and location displacement control values for an output pointer into a decompressed video frame. By coding frame to frame differences in an exclusive-OR values, the replay process is made bidirectional, allowing for both forward and reverse playback of the video segment.
摘要:
A system and method of compressing original video data expressed in a plurality of digitally coded frames which enable decompression and playback of resulting compressed video data at one of a plurality of frame rates while maintaining temporal fidelity of the frames displayed. Compression includes selecting a plurality of rate streams for the compressed video data, including a highest rate stream including all of the frames of the original video data and a lowest rate stream including a subset of regularly spaced frames of the original video data. Then the initial frame in the original video data is spatially compressed and the resulting compressed data placed in the compressed video data. The initial frame is also saved as a base frame for all rate streams for subsequent temporal compression of the original video data. As frames are retrieved from the original video data in sequence, temporal compression based on frame differencing techniques between the retrieved frame and the base is carried out, with difference frames being stored to the compressed video data. Each difference frame is placed in the resulting compressed video data for later decompression and reproduction.
摘要:
Disclosed is a system and a method for compressing digitized color video data by generating codes into a pattern of tables for regions in frames of the video data exhibiting certain patterns. An image frame in a video data stream has a plurality of pixels assigned digitized color and luminance data. The image frame is divided into a plurality of non-overlapping elementary units, with each elementary unit comprising a plurality of pixels. For elementary units exhibiting change from the prior frame in time, elementary units having pixels with differing digitized color and luminance data are selected for pattern matching. Each pixel of an elementary unit selected for pattern matching is mapped to a pattern value. A pattern value is the same for all pixels sharing the same color and luminance data in an elementary unit. The pattern values are then grouped based on relative position in the elementary unit into offsets into associated sets of pattern match tables and error condition tables. The pattern match tables and error condition tables all relate to a single table of patterns. Entries from the offsets into each associated set of pattern match and error condition tables are then accumulated to generate indicia of pattern matches. The indicia are then compared to select a pattern which best matches the elementary unit within a preselected error tolerance. An offset into a table of patterns for the matched pattern is then generated to provide the desired code.
摘要:
A personal computer system has source of input video data containing digitized pixel color values, and a display operated with palette quantized colors including non-linear palette quantized colors. A conversion table is stored in the system for converting blocks of pixel color values into palette colors, the conversion table comprising a plurality of error diffusion arrays covering the color range of pixel color values. Each array in the conversion table corresponds to a different color value, each array being accessed using said corresponding color value as an index into said table. Each array in the table has "n" fields respectively containing palette color values ordered in accordance with an order matrix by sorted luminance values.
摘要:
A personal computer system is operated to concurrently execute threads of multitasking operations to capture motion video data from a video source, compress such data, and record the compressed data in a file. Compression is selectively done in either one of two modes, an inter-frame compression mode and a intra-frame compression mode, both modes being block-oriented. During intra-frame compression, homogenous blocks are used to represent four pixel values with a single pixel value when the four pixels in a block are perceptually similar. During inter-frame compression, unchanged blocks are used to represent four pixel values as unchanged from the preceding frame when the four pixels are perceptually similar to the same four pixels in the preceding frame. Additionally, inter-frame compressed video frames use homogenous blocks to represent four pixel values with a single pixel when the four pixel values in a block are perceptually similar to each other but are perceptually different from the same four pixels in the previous frame.
摘要:
Hybrid compression processes for digital color video data that enables software only playback of the compressed digital video in low-end computers, wherein intraframe and interframe compression techniques are brought together through a sequence of procedures that analyze local frame regions, integrate unique processes with block truncation coding compression, and adopt the advantages of visual pattern image coding for color video. The process determines the appropriate encoding of each local frame region with one of various compression techniques, based upon its image properties. The compression methods retain the fidelity of the original video data to provide high quality video during decompression and reconstruction of high motion and textured video clips, while simultaneously providing sufficient compression and ease of decoding for software-only decompression thereby exhibiting properties that enable good quality video to be displayed in low-end computers.