Abstract:
Implementations and techniques for changing the orientation of a user of a mobile communication device based at least in part on transmit power are generally discussed. The change in orientation of the user may reduce radiation absorbed by the user.
Abstract:
Techniques for sending signaling information using hierarchical coding are described. With hierarchical coding, individual messages for users are encoded using multiple interconnected encoders such that (1) the message for each user is sent at a data rate suitable for that user and (2) a single multicast message is generated for the messages for all users. A base station determines data rates supported by the users and the code rates to achieve these data rates. Each data rate is determined by one or more code rates. Signaling information for the users is mapped to data blocks to be sent at different data rates. Each data block is then encoded in accordance with the code rate(s) associated with the data rate for that data block. A final coded block is generated for all users and transmitted. Each user performs the complementary decoding to recover the message sent to that user.
Abstract:
Techniques for sending signaling information using hierarchical coding are described. With hierarchical coding, individual messages for users are encoded using multiple interconnected encoders such that (1) the message for each user is sent at a data rate suitable for that user and (2) a single multicast message is generated for the messages for all users. A base station determines data rates supported by the users and the code rates to achieve these data rates. Each data rate is determined by one or more code rates. Signaling information for the users is mapped to data blocks to be sent at different data rates. Each data block is then encoded in accordance with the code rate(s) associated with the data rate for that data block. A final coded block is generated for all users and transmitted. Each user performs the complementary decoding to recover the message sent to that user.
Abstract:
Technology is generally described for computing paths between geographical localities. The technology can receive a request for a path between two or more geographical localities, and compute a path based at least on a popularity rating of intermediate geographical localities.
Abstract:
Method and apparatus for creating a pencil beam using a plurality of small diameter dish antennas. A plurality of small diameter dish antennas are spatially arranged and driven by varying electronic signals in such a way that the plurality of small diameter dish antennas co-operatively produce a pencil beam in the direction of a distant object.
Abstract:
Implementations and techniques for changing the orientation of a user of a mobile communication device based at least in part on transmit power are generally discussed. The change in orientation of the user may reduce radiation absorbed by the user.
Abstract:
Techniques for sending signaling information using hierarchical coding are described. With hierarchical coding, individual messages for users are encoded using multiple interconnected encoders such that (1) the message for each user is sent at a data rate suitable for that user and (2) a single multicast message is generated for the messages for all users. A base station determines data rates supported by the users and the code rates to achieve these data rates. Each data rate is determined by one or more code rates. Signaling information for the users is mapped to data blocks to be sent at different data rates. Each data block is then encoded in accordance with the code rate(s) associated with the data rate for that data block. A final coded block is generated for all users and transmitted. Each user performs the complementary decoding to recover the message sent to that user.
Abstract:
Techniques for sending signaling information using hierarchical coding are described. With hierarchical coding, individual messages for users are encoded using multiple interconnected encoders such that (1) the message for each user is sent at a data rate suitable for that user and (2) a single multicast message is generated for the messages for all users. A base station determines data rates supported by the users and the code rates to achieve these data rates. Each data rate is determined by one or more code rates. Signaling information for the users is mapped to data blocks to be sent at different data rates. Each data block is then encoded in accordance with the code rate(s) associated with the data rate for that data block. A final coded block is generated for all users and transmitted. Each user performs the complementary decoding to recover the message sent to that user.