摘要:
Various methods, carrier media, and systems for monitoring a characteristic of a specimen are provided. One computer-implemented method for monitoring a characteristic of a specimen includes determining a property of individual pixels on the specimen using output generated by inspecting the specimen with an inspection system. The method also includes determining a characteristic of individual regions on the specimen using the properties of the individual pixels in the individual regions. The method further includes monitoring the characteristic of the specimen based on the characteristics of the individual regions.
摘要:
Various methods, carrier media, and systems for monitoring a characteristic of a specimen are provided. One computer-implemented method for monitoring a characteristic of a specimen includes determining a property of individual pixels on the specimen using output generated by inspecting the specimen with an inspection system. The method also includes determining a characteristic of individual regions on the specimen using the properties of the individual pixels in the individual regions. The method further includes monitoring the characteristic of the specimen based on the characteristics of the individual regions.
摘要:
Methods and systems for determining inspection scenarios without input from a user are presented. Inspection scenarios include at least one acquisition mode, defect detection parameter values, and classification parameter values. In one example, a number of defect events are determined by a hot inspection of a wafer surface. The defect events are classified and attributes associated with each defect event are identified. The defect events are labeled with this information. Based on the identified attributes and classification, inspection scenarios are determined. The inspection scenarios are solutions in a mathematical space formed by the identified attributes. In some examples, a plurality of inspection scenarios are determined and a desired inspection scenario is selected from the plurality based on the number of defects of interest and the number of nuisance events captured by the selected inspection scenario.
摘要:
Methods for identifying array areas in dies formed on a wafer and methods for setting up such methods are provided. One method for identifying array areas in dies formed on a wafer includes comparing an array pattern in a template image acquired in one of the array areas to a search area image acquired for the wafer. The method also includes determining areas in the search area image in which a pattern is formed that substantially matches the array pattern in the template image based on results of the comparing step. In addition, the method includes identifying the array areas in the dies formed on the wafer based on results of the determining step.
摘要:
Methods and systems for determining inspection scenarios without input from a user are presented. Inspection scenarios include at least one acquisition mode, defect detection parameter values, and classification parameter values. In one example, a number of defect events are determined by a hot inspection of a wafer surface. The defect events are classified and attributes associated with each defect event are identified. The defect events are labeled with this information. Based on the identified attributes and classification, inspection scenarios are determined. The inspection scenarios are solutions in a mathematical space formed by the identified attributes. In some examples, a plurality of inspection scenarios are determined and a desired inspection scenario is selected from the plurality based on the number of defects of interest and the number of nuisance events captured by the selected inspection scenario.
摘要:
Computer-implemented methods, carrier media, and systems for creating a defect sample for use in selecting one or more parameters of an inspection recipe are provided. One method includes separating defects into bins based on regions in which the defects are located, defect types, and values of the defects for parameter(s) of a detection algorithm. The method also includes determining a number of the defects to be selected from each bin by distributing a user-specified target number of defects across the bins. In addition, the method includes selecting defects from the bins based on the determined numbers thereby creating a defect sample for use in selecting values of parameter(s) of the detection algorithm for use in the inspection recipe.
摘要:
Methods for identifying an edge of a care area for an array area formed on a wafer and/or for binning defects detected in the array area are provided. One method for identifying an edge of a care area for an array area formed on a wafer includes determining a value for a difference image as a function of position from a position known to be inside the array area to a position known to be outside of the array area. The method also includes identifying the position that is located closest to the inside of the array area and that has the value greater than a threshold as a position of the edge of the care area.
摘要:
Methods for identifying an edge of a care area for an array area formed on a wafer and/or for binning defects detected in the array area are provided. One method for identifying an edge of a care area for an array area formed on a wafer includes determining a value for a difference image as a function of position from a position known to be inside the array area to a position known to be outside of the array area. The method also includes identifying the position that is located closest to the inside of the array area and that has the value greater than a threshold as a position of the edge of the care area.
摘要:
Methods for identifying an edge of a care area for an array area formed on a wafer and/or for binning defects detected in the array area are provided. One method for identifying an edge of a care area for an array area formed on a wafer includes determining a value for a difference image as a function of position from a position known to be inside the array area to a position known to be outside of the array area. The method also includes identifying the position that is located closest to the inside of the array area and that has the value greater than a threshold as a position of the edge of the care area.
摘要:
Various methods and systems for determining a defect criticality index (DCI) for defects on wafers are provided. One computer-implemented method includes determining critical area information for a portion of a design for a wafer surrounding a defect detected on the wafer by an inspection system based on a location of the defect reported by the inspection system and a size of the defect reported by the inspection system. The method also includes determining a DCI for the defect based on the critical area information, a location of the defect with respect to the critical area information, and the reported size of the defect.