摘要:
Provided is a polymer electrolyte containing a block copolymer comprising one or more blocks having sulfonic acid groups and one or more blocks having substantially no sulfonic acid group, and at least one block among all blocks is a block having aromatic rings in the main chain thereof, and a method for producing the same. The polymer electrolyte is suitable for a proton conductive film of a fuel cell due to excellent water resistance and heat resistance, and high proton conductivity.
摘要:
Provided is a polymer electrolyte containing a block copolymer comprising one or more blocks having sulfonic acid groups and one or more blocks having substantially no sulfonic acid group, and at least one block among all blocks is a block having aromatic rings in the main chain thereof, and a method for producing the same. The polymer electrolyte is suitable for a proton conductive film of a fuel cell due to excellent water resistance and heat resistance, and high proton conductivity.
摘要:
A polymer electrolyte having, in a main chain, a structural unit represented by the following formula (1): —[Ar1—(SO2—N−(X+)—SO2—Ar2)m—SO2—N−(X+)—SO2—Ar1—O]— (1) wherein Ar1 and Ar2 independently represent a divalent aromatic groups, m represents an integer of 0 to 3, and X+ represents an ion selected from hydrogen ion, an alkali metal ion and ammonium ion, which is excellent in proton conductivity, thermal resistance and strength. The polymer electrolyte is soluble in solvents and has excellent film forming property and recycling efficiency.
摘要:
Provided is a polymer electrolyte which is cheap and easily synthesized, and has a high water resistance and high output performance.The polymer electrolyte comprising a sulfonated polymer having an ion-exchange group equivalent weight of 500 to 2500 g/mol, which is obtainable by sulfonating a structural unit represented by the structural formula (II) of a copolymer having 95 to 40 mol % of a structural unit represented by the following structural formula (I) and 5 to 60 mol % of a structural unit represented by the following structural formula (II), ##STR1##
摘要:
A non-aqueous electrolyte lithium secondary battery, comprising a cathode containing, as active material, a material that can be doped/undoped with lithium ions, an anode containing, as active material, a carbonaceous material that can be doped/undoped with lithium ions, a separator interposed between the cathode and anode and an electrolyte prepared by dissolving lithium salt in an organic solvent, wherein the anode contains a polymer having carbonate groups represented by the structural formula �I!: ##STR1## said polymer having a number average molecular weight of not less than 300 and not more than 200,000. The lithium secondary battery has cycle life and high-rate capacity which are improved without reducing low-temperature capacity.
摘要:
A polymer electrolyte comprising a sulfonated polyethersulfone having an ion-exchange group equivalent weight of 870 to 5000 g/mol, which is obtainable by sulfonating a polyethersulfone having the structural unit represented by the following structural formula, ##STR1## The polymer electrolyte is cheap, easily mold-processable by virtue of soluble property in organic solvent and thermoplastic property, easily film-processable, highly water-resistant, and suitable for a fuel cell.
摘要:
The present invention provide a copolymer which exhibit high electricity generation characteristics when being used as a polyelectrolyte for fuel cell, and also provide a copolymer comprising an aromatic unit substantially free from an ion-exchange group, and an aliphatic unit having an ion-exchange group and a main chain consisting of an aliphatic repeating unit.
摘要:
Provided are an electrode to enhance the power generation efficiency in a fuel cell, in particular a single-chamber solid electrolyte fuel cell, and such an electrode. The electrode of the present invention comprises ΔEh, represented by the following formula (1), being not less than −10 mV and not more than 100 mV. ΔEh=E0−E3 (1) (where E0 denotes an electrode potential when a gas having a hydrogen concentration of 0% (an oxidizing gas only) makes contact with the electrode at room temperature, and E3 denotes an electrode potential when a mixed gas having a hydrogen concentration of 3 volume % (a hydrogen gas and the oxidizing gas) makes contact with the electrode at room temperature.)
摘要:
It is an object of the present invention to provide an electrode catalyst composition capable of forming an electrode to enhance the power generation efficiency in a fuel cell, in particular a single-chamber solid electrolyte fuel cell. The electrode catalyst composition of the present invention comprises gold and platinum, wherein the number of gold atoms is exceeding 0 and not more than 3 when the number of platinum atoms is 100.
摘要:
The present invention is to provide an electrolyte membrane which retains durability even after having undergone a dimensional change accompanying chemical deterioration caused owing to radicals having high oxidizing ability such as hydroxyl radicals (.OH) or peroxide radicals (.OOH), and the selecting method thereof.An electrolyte membrane has an amount of dimensional change in a plane direction between dimensions obtained in a dry state before and after carrying out the Fenton test, the amount of dimensional change before and after the Fenton test being smaller than an amount of maximum elastic deformation in a plane direction obtained in dry state before carrying out the Fenton test, provided that the Fenton test is carried out under the following condition, and the selecting method of the same. (1) iron ion (Fe2+) concentration: 4 ppm, (2) hydrogen peroxide concentration: 3 wt %, (3) boiling temperature: 80° C., (4) boiling time: 120 minutes