Abstract:
An RFID tag is provided with an RFID chip and an antenna and interactive switch electrically coupled to the RFID chip. When a user physically interacts with the switch (such as by pressing the switch with a finger), the antenna transmits an input signal to an RFID reader of an RFID-based control system. The RFID reader, in turn, transmits a control signal to an electronic device for controlling the device. The RFID tag may be incorporated into any of a number of devices, such as a keyboard or article of clothing, and can function to operate a variety of electronic devices, including audio-visual devices and gaming systems.
Abstract:
An assembly method for first and second articles is disclosed. A first substrate with a plurality of first articles and a second substrate with a plurality of second articles are selected. The articles on the flexible substrate webs with different pitches are assembled together by displacing portions between the first articles of one web out of plane to move the first articles on that web to the same shorter pitch as the second articles on the other web, aligning the two webs to register corresponding first and second articles on the two webs, and assembling the corresponding articles together. The assembly may be used for example in the making of RFID tags, labels and inlays.
Abstract:
A system for measuring RFID strap characteristics by coupling through a dielectric. The system can include a meter, test pads, springs, and wiring. Test pads may contact a substrate opposite of the RFID strap, and the coupling capacitance through the dielectric substrate may be utilized to calculate the strap capacitance. Similarly, other electrical properties of an RFID strap or other RFID assembly may be measured by coupling through a dielectric.
Abstract:
Systems and methods are provided for labeling a piece of merchandise with a wireless communication device. In addition to a wireless communication device, the merchandise tag includes an associated label made of a washable fabric material. The wireless communication device is incorporated into the label and includes an RFID chip and a slot-loop hybrid antenna, with the antenna including a conductor sheet that defines a slot. The label is secured to a piece of merchandise at a sew line, with the sew line dividing the label into an upper portion and a lower portion. The RFID chip and the slot of the antenna, along with a relatively high conductance piece or portion of the conductor sheet, are positioned within the upper portion of the label, while a relatively low conductance piece or portion of the conductor sheet is positioned within the lower portion of the label.
Abstract:
Infrastructure-mounted RFID-readable tags or transponders are provided for various applications. Such infrastructure tags may be employed in combination with RFID-readable product tags and an RFID reader for an improved inventory-management system which requires both types of tags to be scanned to constitute a successful product count. Infrastructure tags may also be employed as “read” or “no-read” tags in an RFID read field. The infrastructure tags of the RFID read field are combined with an RFID reader which is dynamically adaptable during initial set-up and use to improve the performance of the read field. When a perturbing object is detected in the read field, one or more performance parameters of the reader are adjusted to overcome any perturbing influence caused by the object.
Abstract:
Robust merchandise tags, patches, inlays and labels are provided for mounting on garments, fabrics, apparel accessories and other flexible merchandising materials. These are robust enough to withstand processing during manufacturing, including steps such as machine washing, stone washing and chemical treatments, while being capable of remaining on the garment, fabric or the like during inventory handling, merchandising and consumer use. The robust merchandise tags combine a hybrid-slot loop antenna structure with an uncharacteristically large area conductor sheet in the nature of a foil or the like. Overlaminations and fold-over portions also can be included for robustness enhancement.
Abstract:
Systems and methods are provided for labeling a piece of merchandise with a wireless communication device. In addition to a wireless communication device, the merchandise tag includes an associated label made of a washable fabric material. The wireless communication device is incorporated into the label and includes an RFID chip and a slot-loop hybrid antenna, with the antenna including a conductor sheet that defines a slot. The label is secured to a piece of merchandise at a sew line, with the sew line dividing the label into an upper portion and a lower portion. The RFID chip and the slot of the antenna, along with a relatively high conductance piece or portion of the conductor sheet, are positioned within the upper portion of the label, while a relatively low conductance piece or portion of the conductor sheet is positioned within the lower portion of the label.
Abstract:
Wireless charger units include a transmitter unit to provide an AC magnetic field at a predetermined frequency to a physically separate receiver unit, the receiver unit receives the alternating current magnetic field, converts the alternating current magnetic field into an alternating current, and rectifies the alternating current to provide a direct current output. The receiver unit can be resonant at a multiple integer of the predetermined frequency. The electronic device may be a disposable and may include a blister pack for pills with the receiver unit monitoring the usage of the pills. The receiver unit may also include an intelligent controller. Related methods are disclosed.
Abstract:
The present invention relates to an RFID device that is intended to be used in connection with direct or indirect packaging of consumer food products, such as with the use of food trays, totes and other transport packaging for perishable items. The RFID device may include a RFID inlay assembly that has been encased in a laminate that is safe for use with food products.
Abstract:
This application generally relates to systems and methods of using Radio Frequency Identification (RFID) devices to remotely analyze objects and structures, and more particularly, this application relates to systems and methods of using RFID devices to remotely analyze properties and conditions of a surface of objects and structures.