摘要:
Tomographic imaging using an imaging sensor that has a stripe-like shape is disclosed where a stripe sensor is mechanically scanned over a sample at different angles. For a single stripe detector imaging, linear motion and angular rotation are required. Single stripe sensor imaging may be performed using an elongated inductive coil detector. By utilizing an array of parallel stripe sensors that can be individually addressed, two-dimensional imaging can be performed with rotation only, eliminating the requirement for linear motion, e.g. with parallel coils array. Imaging with a stripe-type sensor of particular width and thickness (where width is much larger than thickness) is resolution limited only by the thickness (smaller parameter) of the sensor. Multiple sensor families can be produced where this imaging technique may be beneficial such as magneto-resistive, inductive, SQUID, and Hall effect sensors, and particularly in the field of magnetic resonance imaging (MRI).
摘要:
The invention combines (A) capabilities in fabrication, characterization, and manipulation of single domain magnetic nanostructures, with (B) the use of binding chemistry of biological molecules to modify the magnetic nanostructures into magnetic sensors and magnetically controllable nanoprobes. A biological characterization scheme is realized by combining nanomanipulation and observation of small magnetic structures in fluids. By coating nanomagnets with biological molecules, ultra-small, highly sensitive and robust biomagnetic devices are defined, and molecular electronics and spin electronics are combined. When these nano-sensors are integrated into microfluidic channels, highly efficient single-molecule detection chips for rapid diagnosis and analysis of biological agents are constructed.
摘要:
Methods and arrangements to lyse a biological sample are described. The arrangements comprise a lysis tube containing the sample, one or more electromagnets generating a magnetic field, and one or more permanent magnets inside the lysis tube. The permanent magnets move and lyse the sample when a magnetic field is generated by the electromagnets.
摘要:
Tomographic imaging using an imaging sensor that has a stripe-like shape is disclosed where a stripe sensor is mechanically scanned over a sample at different angles. For a single stripe detector imaging, linear motion and angular rotation are required. Single stripe sensor imaging may be performed using an elongated inductive coil detector. By utilizing an array of parallel stripe sensors that can be individually addressed, two-dimensional imaging can be performed with rotation only, eliminating the requirement for linear motion, e.g. with parallel coils array. Imaging with a stripe-type sensor of particular width and thickness (where width is much larger than thickness) is resolution limited only by the thickness (smaller parameter) of the sensor. Multiple sensor families can be produced where this imaging technique may be beneficial such as magneto-resistive, inductive, SQUID, and Hall effect sensors, and particularly in the field of magnetic resonance imaging (MRI).
摘要:
Methods and arrangements to lyse a biological sample are described. The arrangements comprise a lysis tube containing the sample, one or more electromagnets generating a magnetic field, and one or more permanent magnets inside the lysis tube. The permanent magnets move and lyse the sample when a magnetic field is generated by the electromagnets.
摘要:
Methods and arrangements to lyse a biological sample are described. The arrangements comprise a lysis tube containing the sample, one or more electromagnets generating a magnetic field, and one or more permanent magnets inside the lysis tube. The permanent magnets move and lyse the sample when a magnetic field is generated by the electromagnets.
摘要:
Systems and methods for obtaining two- and three-dimensional magnetic resonance images by using azimuthally symmetric dipolar magnetic fields from magnetic spheres. A complete two- or three-dimensional structured rendering of a sample can be obtained without the motion of the sample relative to the sphere. Magnetic spheres in the range of 100 μm and 100 nm are used with samples that are approximately one-tenth as large as the magnetic sphere. Sequential positioning of the integrated sample-sphere system in an external magnetic field at various angular orientations provides all the required imaging slices for successful computerized tomographic image reconstruction. The requirement to scan the sample relative to the magnetic tip is eliminated. Resolutions approaching atomic dimensions are expected to be obtained.
摘要:
Apparatus and method for manipulating particles on a micro- or nano-scale. An embodiment of the present invention includes a magnetic micro-manipulation technique that utilizes micro-coils and soft magnetic microscopic wires for localized manipulation of particles. Another embodiment of the present invention uses magneto-static interaction between two magnetic microscopic wires to mechanically manipulate particles. Yet another embodiment of the present invention combines a magnetic particle with a magnetic manipulator or other device for generating magnetic fields to operate as a micro-fluidic micro-motor. Other embodiments of the present invention employ a magnetic separation system employing porous membranes partially filled with magnetic wires.
摘要:
A magnetic-resonance imaging system including a magnetic-resonance sensor including at least one magneto-resistive element; and a sample disposed adjacent to the magnetic-resonance sensor and configurable to generate a magnetic-resonance signal, wherein the magneto-resistive element is configured to generate a magnetic field in response to a current driven through the magneto-resistive element, the magnetic field being configured to polarize spins of the sample, and detect a magnetic-resonance signal from precession of the spins.
摘要:
An electromagnetic actuator for a microfluidic pump of the type that causes periodic pinching and releasing against the walls of a fluidic channel, e.g., a tube. At least one permanent magnet is placed against the walls of the fluidic channel, and located in an area with magnetic fields, produced by coils that are radially symmetric to the channel. The permanent magnet is cause to press and release against the wall of the fluid channel to cause a fluid flow through the channel.