摘要:
A small base node such as a Home Base Node (HNB), or femto cell, may reduce its transmit power in order to prevent co-channel or adjacent channel interference, or to limit its coverage area. Once the power is set, the HNB signal to a served Home User Equipment (HUE) its transmit Common Pilot Channel (CPICH) transmit power for accurate path loss estimation. When this power is outside of the permissible range, the HNB adjusts other parameters (such as Random Access Channel (RACH) constant value) to compensate for the error in signaled CPICH power, and thus compensate in that process the error in determining path loss. Similarly, if the uplink sensitivity is adjusted, to prevent interference, parameters would also be adjusted and signaled to the HUE to reflect the link imbalance.
摘要:
A small base node such as a Home Base Node (HNB), or femto cell, may reduce its transmit power in order to prevent co-channel or adjacent channel interference, or to limit its coverage area. Once the power is set, the HNB signal to a served Home User Equipment (HUE) its transmit Common Pilot Channel (CPICH) transmit power for accurate path loss estimation. When this power is outside of the permissible range, the HNB adjusts other parameters (such as Random Access Channel (RACH) constant value) to compensate for the error in signaled CPICH power, and thus compensate in that process the error in determining path loss. Similarly, if the uplink sensitivity is adjusted, to prevent interference, parameters would also be adjusted and signaled to the HUE to reflect the link imbalance.
摘要:
A small base node such as a Home Base Node (HNB), or femto cell, may reduce its transmit power in order to prevent co-channel or adjacent channel interference, or to limit its coverage area. Once the power is set, the HNB signal to a served Home User Equipment (HUE) its transmit Common Pilot Channel (CPICH) transmit power for accurate path loss estimation. When this power is outside of the permissible range, the HNB adjusts other parameters (such as Random Access Channel (RACH) constant value) to compensate for the error in signaled CPICH power, and thus compensate in that process the error in determining path loss. Similarly, if the uplink sensitivity is adjusted, to prevent interference, parameters would also be adjusted and signaled to the HUE to reflect the link imbalance.
摘要:
In a wireless communication system in which a user using a mobile equipment requests a serving cell handoff from a source cell to a target cell, the mobile equipment monitors authorization for the handoff from the target cell. At the same time, the mobile equipment can decode data from either the source cell or the target cell. Upon receipt of authorization for the handoff, the mobile equipment sends confirmation of the handoff to the target cell.
摘要:
Systems and methodologies are described that facilitate dynamic load balancing in a communications network. In particular, one or more mobile devices can send random access preambles on an uplink frequency paired to a downlink frequency employed to connect the one or more mobile devices to a base station. The base station can determine if an uplink frequency load imbalance exists based upon the random access preambles. The base station can transmit an indicator on an acquisition indicator channel to at least one mobile device wherein the indicator includes a command to transition to a new uplink frequency. The mobile device can switch uplink frequencies in response to the command.
摘要:
Techniques for controlling transmission of packets on multiple links are described. In one design, a transmitter may generate packets of data for a receiver, assign the packets with sequence numbers from a single sequence number space, demultiplex the packets into multiple streams for multiple links, and send each stream of packets on the associated link to the receiver. The receiver may receive some packets in error, and the correctly received packets may be out of order. In one design, the receiver may maintain the largest sequence number of correctly received packets for each link. After detecting at least one missing packet, the receiver may send status information conveying the missing packet(s) and the largest sequence numbers for all links to the transmitter. The transmitter may use the largest sequence numbers for all links and its packet-to-link mapping to determine whether to quickly resend each missing packet or wait.
摘要:
In a wireless communication system in which a user using a mobile equipment requests a serving cell handoff from a source cell to a target cell, the mobile equipment monitors authorization for the handoff from the target cell. At the same time, the mobile equipment can decode data from either the source cell or the target cell. Upon receipt of authorization for the handoff, the mobile equipment sends confirmation of the handoff to the target cell.
摘要:
Aspects are disclosed for facilitating a hand-in to a femto cell. An identifier is assigned to a femto cell in which the identifier is based on a scrambling parameter and a timing parameter. A relationship between the identifier and the femto cell is then communicated. In another embodiment, a user equipment report is received, which includes attributes related to a signal broadcast by a femto cell. An identifier associated with the femto cell is ascertained from an attribute included in the report. The femto cell is then identified based on the identifier. In a further embodiment, a timing parameter is received, and a scrambling parameter is set. A signal including the scrambling parameter is then broadcast according to an offset related to the timing parameter. In yet another embodiment, a femto cell is detected during an active call. An identifier associated with the femto cell is then ascertained and reported.
摘要:
Providing for fast allocation of additional carriers in multi-carrier wireless communication systems is described herein. By way of example, high layer protocols can be employed to allocate additional carriers to UEs in a wireless network. Additionally, management of the additional carriers can be accomplished via high speed lower layer signaling protocols. Management can involve activating/deactivating the additional carriers, instructing the UE to provide carrier feedback, monitor pilot or control channels of such carriers, or the like. Because lower layer signaling is relatively fast, activation or deactivation of the additional carrier can be quickly implemented in response to contemporaneous changes in channel conditions. Thus, changes to signal quality or network loading can be determined and utilized to customize carrier activation in near real-time, providing efficient resource allocation while conserving UE battery life.
摘要:
Systems and methodologies are described herein that facilitate improved cell search and selection in a wireless communication system. For example, a terminal as described herein can utilize one or more Closed Subscriber Group (CSG)-specific offset and/or hysteresis parameters as described herein to increase the amount of time on which the terminal is allowed to camp on a desirable cell. Additionally, specialized reselection timing can be employed as described herein to increase a delay associated with selecting a Home Node B (HNB) or Home Evolved Node B (HeNB) cell, thereby reducing power consumption associated with rapid cell reselection operations in a densely populated network environment. Further, a two-step reselection process can be performed as described herein in the context of selecting a frequency for cell reselection, thereby mitigating the effects of rapid reselection between cells and/or frequencies due to CSG cell prioritization.