Abstract:
A process for preparing ethylene polymers including the step of polymerizing ethylene or copolymerizing ethylene and one or more comonomers at a temperature from 100° C. to 350° C. and a pressure of from 110 MPa to 350 MPa in a continuously operated tubular polymerization reactor, thereby yielding a reaction mixture, wherein the tubular polymerization reactor has a reactor cooling jacket for removing the heat of the reaction and a pressure control valve, the reaction mixture leaves the reactor through the pressure control valve, the reaction mixture then passes a post-reactor cooler equipped with a post-reactor cooling jacket, the reactor cooling jacket is provided with a reactor coolant having an inlet temperature and the post-reactor cooling jacket is provided with a post-reactor coolant having an inlet temperature, and the inlet temperature of the post-reactor coolant is independently controlled from the inlet temperature of the reactant coolant.
Abstract:
A process for separating polymeric and gaseous components of a polymer-monomer mixture at a pressure of from 0.12 MPa to 0.6 MPa and a temperature of from 120° C. to 300° C. in a separation vessel is provided. The separation vessel has a vertically arranged cylindrical shape with a ratio of length to diameter L/D of from 0.6 to 10 and an inlet pipe capable of introducing the polymer-monomer mixture into the separation vessel which the inlet pipe extends vertically from the top of the separation vessel into the separation vessel. Further a process for preparing ethylene homopolymers or copolymers from ethylenically unsaturated monomers in the presence of free-radical polymerization initiators at temperatures from 100° C. to 350° C. and pressures in the range of from 110 MPa to 500 MPa comprising such a process for separating a polymer-monomer mixture is provided.
Abstract:
The present disclosure relates to a vessel for separating, at a pressure of from 10 MPa to 50 MPa, a composition comprising liquid components and gaseous components into a liquid fraction and a gaseous fraction, whereinthe separation vessel has a vertically arranged cylindrical shape,has at its top a manhole, which is surrounded by a thickened part of the separation vessel wall;and bears at least one bursting disc which is held by a bursting disc holder which is installed pressure-tight within a boring in the thickened part of the separation vessel wall.
Abstract:
The present disclosure generally relates to a process for separating polymeric and gaseous components of a reaction mixture obtained by high-pressure polymerization of ethylenically unsaturated monomers in the presence of free-radical polymerization initiators into a gaseous fraction and a liquid fraction in a separation vessel, wherein the filling level of the liquid fraction in the separation vessel is measured by a radiometric level measurement system comprising at least two radioactive sources and at least three radiation detectors, and the filling level is controlled by a product discharge valve which operates based on data coming from the level measurement system.
Abstract:
The present disclosure relates to a manufacturing plant for high-pressure polymerization having a layered tubular reactor and a method for an emergency shutdown in said manufacturing plant. The present disclosure also relates to a process for manufacturing LDPE using said layered tubular reactor.
Abstract:
The present technology relates to a process for polymerizing or copolymerizing ethylenically unsaturated monomers in the presence of free-radical polymerization initiators, wherein the polymerization is carried out in a continuously operated tubular reactor at temperatures from 100° C. to 350° C. and pressures from 180 MPa to 340 MPa, with a specific reactor surface area Asp of 2 m2/(t/h) to 5.5 m2/(t/h), and the tubular reactor has a specific ratio RDsp of 0.0050 MPa−1 to 0.0069 MPa−1 and an inner surface which has a surface roughness Ra of 2 μm or less.
Abstract:
The present technology relates to a process for polymerizing or copolymerizing ethylenically unsaturated monomers in the presence of free-radical polymerization initiators, wherein the polymerization is carried out in a continuously operated tubular reactor at temperatures from 100° C. to 350° C. and pressures from 180 MPa to 340 MPa, with a specific reactor surface area Asp of 2 m2/(t/h) to 5.5 m2/(t/h), and the tubular reactor has a specific ratio RDsp of 0.0050 MPa−1 to 0.0069 MPa−1 and an inner surface which has a surface roughness Ra of 2 μm or less.
Abstract:
A high-pressure polymerization system having a) a polymerization reactor and b) a reactor blow down system having b1) a reactor blow down vessel, having a circular design over a major portion P having a L/D-ratio in the range from 1.75 to 10.0 and containing an aqueous quenching medium, b2) a release line connecting the polymerization reactor with the reactor blow down vessel and having an outlet located above a maximum level for the aqueous quenching medium, b3) a first emergency valve in the release line to open and close fluid communication between the polymerization reactor and the reactor blow down system, and wherein the release line outlet has a joining piece having an angle (a) between the central axis and a tangent at the reactor blow down vessel in the range from 5° to 70° and the reactor blow down vessel has a vent stack containing a constricted section.
Abstract:
A process for the preparation of ethylene homopolymers or copolymers in a facility having a high-pressure tubular reactor and a preheater, wherein a reaction fluid introduced into the reactor at a reactor inlet is heated in the preheater and the average velocity of the reaction fluid in the preheater is lower than the average velocity of the reaction fluid in the tubular reactor and the ratio of the average velocity in the tubular reactor to the average velocity of the reaction fluid in the preheater is in the range from 1.5 to 5.
Abstract:
The present technology relates to a process for polymerizing or copolymerizing ethylenically unsaturated monomers in the presence of free-radical polymerization initiators, wherein the polymerization is carried out in a continuously operated tubular reactor at temperatures from 100° C. to 350° C. and pressures from 180 MPa to 340 MPa, with a specific reactor surface area Asp of 2 m2/(t/h) to 5.5 m2/(t/h), and the tubular reactor has a specific ratio RDsp of 0.0050 MPa−1 to 0.0069 MPa−1 and an inner surface which has a surface roughness Ra of 2 μm or less.