Abstract:
Disclosed herein are composite materials and methods for forming the same. In one embodiment, a composite material comprises a primer layer comprising a polyalkylenimine, and an active layer comprising a binder and a metal organic framework (MOF), wherein the MOF comprises a bidentate organic compound coordinated to a metal ion, and wherein the active layer forms a coating on the primer layer.
Abstract:
There is provided a method of forming a metallized polymeric film comprising (1) coating a polymer film with an aqueous primer solution comprising a solution of at least one polyanion and at least one polyethyleneimine, wherein the polyanion is a polymer comprising at least partially neutralized acid groups having a weight average molecular weight of preferably at least 5000 g/mol prior to neutralization; and wherein said polyethyleneimine has a weight average molecular weight of preferably at least 25000 g/mol; and (2) depositing a metal or a metal oxide on the at least one coated side of the polymer film.
Abstract:
Method for coagulating an aqueous polymer dispersion, where the aqueous polymer dispersion comprises at least one polymer in dispersion in aqueous phase, and also comprises thermally expandable, thermoplastic microspheres, the polymer dispersion is coagulated by energy input, and the coagulated composition is delivered via an outlet aperture, preferably in the form of a nozzle.
Abstract:
A description is given of a two-part adhesive product comprising a first composition in the form of an aqueous polymer dispersion comprising at least one adhesive polymer which is formed by emulsion polymerization of soft (meth)acrylic ester monomers, monomers with an acid group, styrene, and optionally further monomers. A second composition comprises a metal salt coagulant which causes instantaneous coagulation of the first composition when contacting the first with the second composition. The two-part adhesive product can be used for adhesively bond-ing foamed substrates
Abstract:
The use of an aqueous polyurethane dispersion adhesive is described for producing composite foils which are biodisintegratable at home compost conditions where at least two substrates are adhesive-bonded to one another with use of the polyurethane dispersion adhesive, where at least one of the substrates is a polymer foil which is biodisintegratable at home compost conditions. At least 60% by weight of the polyurethane is composed of diisocyanates, polyesterdiols, and at least one bifunctional carboxylic acid selected from dihydroxy carboxylic acids and diamino carboxylic acids, wherein the polyurethane has no melting point above 20° C. or wherein the polyurethane has a melting point above 20° C. with an enthalpy of fusion lower than 10 J/g, and wherein a film of the polyurethane adhesive is biodegradable at home compost conditions.
Abstract:
Described is an aqueous one-component coating composition comprising dispersed polyurethane and phyllosilicate. The polyurethane carries acid groups which are at least partially neutralized with a hydrophilic base selected from inorganic bases and organic mono-amines. The hydrophilic base has a water solubility at 20° C. of at least 150 g/l, preferably of at least 200 g/l. The composition can be used for providing oxygen barrier properties to a polymer film.
Abstract:
Described is an aqueous coating composition comprising an aqueous dispersion of a radically polymerized addition polymer and phyllosilicate. The aqueous polymer dispersion has a particularly low electrical conductivity. The composition can be used for providing oxygen barrier properties to polymer films.
Abstract:
Described is an aqueous composition comprising (a) at least one polyanion, (b) at least one ethoxylated cationic polymer, and (c) at least one phyllosilicate. The composition can be used for providing oxygen barrier properties to a polymer film.