Abstract:
A multi-use disposable set (MUDS) has at least one syringe having a proximal end and a distal end spaced apart from the proximal end along a longitudinal axis. The MUDS further has a plunger reciprocally movable within a syringe interior between the proximal end and the distal end. A manifold is in fluid communication with the distal end of the at least one syringe. At least one valve is in fluid communication with the syringe interior. The at least one valve is operable between a filling position for filling the syringe interior with fluid and a delivery position for delivering the fluid from the syringe interior. At least one connection port is in fluid communication with the manifold and the syringe interior when the at least one valve is in the delivery position. A multi-fluid delivery system having the medical convector and MUDS is also provided. Various features of the MUDS system are also described.
Abstract:
Injector systems which include a syringe and a powered injector to inject a fluid into a patient are described. The powered injector includes a drive member, an energy source, at least one sensor for detecting energy from the energy source, and at least one contact member axially movable in the injector and in communication with the sensor. The syringe includes at least one indicator positioned at a predetermined position, such as on a rear surface of an attachment flange, which may transmit or reflect energy from the energy source to the sensor. The contact member may contact and be moved by the indicator when the syringe is attached to the powered injector, so that the energy detected by the sensor may be determined by the position of the indicator. The position of the indicator thereby provides information about the syringe configuration.
Abstract:
A pressure jacket for use with a fluid injector includes a barrel having a distal end, a proximal end, and a sidewall extending between the distal end and the proximal end along a longitudinal axis. The pressure jacket includes at least one engagement member protruding from a terminal portion of the proximal end of the barrel in a proximal direction along the longitudinal axis. The at least one engagement member tapers axially in a direction from the distal end toward the proximal end of the barrel. The at least one engagement member engages with a locking mechanism on the fluid injector to releasably lock the pressure jacket with the fluid injector. A taper of the at least one engagement member rotationally guides the barrel into self-alignment with the locking mechanism and axially ejects the barrel upon rotation of the barrel about the longitudinal axis.
Abstract:
A fluid path set includes a first fluid line having a proximal end fluidly connectable to a source of a first fluid and a second fluid line having a proximal end fluidly connectable to a source of a second fluid. A flow mixing device is in fluid communication with distal ends of the first and second fluid lines. The flow mixing device includes a housing, a first fluid port provided for receiving the first fluid, and a second fluid port for receiving the second fluid. A mixing chamber is disposed within the housing and is in fluid communication with the first and second fluid ports. A third fluid port in fluid communication with the mixing chamber for discharging a mixed solution of the first and second fluids. A turbulent flow inducing member is disposed within the mixing chamber for promoting turbulent mixing of the first and second fluids.
Abstract:
A system for delivering fluid to a patient including housing having at least one syringe port and a fluid control device adapted to interface with and actuate at least one syringe engaged therein. The fluid control device includes a processor configured to control a fluid delivery and to wirelessly communicate with one or more portable computers. The portable computer may be programmed or configured to receive one or more fluid delivery parameters from the fluid control device, a user interface, a patient records database, an imaging device, a second computer, a server, a wireless network, or a combination thereof and generate a display containing information pertaining to the fluid delivery parameter based at least partially on the received data. The fluid control device is further configured or programmed to execute one or more control options based at least partially on instructions received from the portable computer.
Abstract:
A syringe manifold (300) for a fluid injector assembly includes a middle body member (304) defining an upper cavity (308) and a lower cavity (309), the middle body member defining at least one fluid path in an upper surface of the middle body member and at least one fluid path in a lower surface of the middle body member, the middle body member defining at least two ports extending through the middle body member, the middle body member comprising an outlet (302) for connection of the syringe manifold to at least one fluid delivery device; a lower body member (303) received within the lower cavity of the middle body member, the lower body member comprising at least one connector for connection of the lower body member to a syringe assembly (700); and an upper body member (305) received within the upper cavity of the middle body member.
Abstract:
A method for controlling fluid ratio accuracy during a dual flow injection with a powered injection system is described. The method includes predicting a first capacitance volume of a first syringe comprising a first medical fluid and a second capacitance volume of a second syringe comprising a second medical fluid with a first capacitance correction factor and a second capacitance correction factor, respectively, selecting a ratio of the first medical fluid and the second medical fluid to be administered to a patient in the dual flow injection, determining a relative acceleration ratio of a first piston of the first syringe and a second piston of a second syringe based on the predicted first capacitance volume and the predicted second capacitance volume, wherein the relative acceleration ratio is selected to maintain the selected ratio of the first medical fluid and the second medical fluid during the dual flow injection, and injecting a mixture of a first medical fluid and a second medical fluid having the selected ratio with the powered injection system.
Abstract:
A pressure jacket includes a barrel having a proximal end, a distal end, and a sidewall extending substantially circumferentially between the proximal end and the distal end along a longitudinal axis. The pressure jacket also includes at least one retaining member having at least one first lug protruding radially outward relative to an outer surface of the sidewall. The at least one first lug has at least one third surface tapered axially relative to the longitudinal axis of the barrel in a proximal direction. The at least one first lug is configured for engagement with a locking mechanism associated with a port on a fluid injector to releasably lock the pressure jacket with the fluid injector. At least a portion of the at least one third surface axially ejects the pressure jacket upon rotation of the pressure jacket about the longitudinal axis.
Abstract:
A medical injector including at least one syringe port for engaging at least one syringe and having a locking mechanism. The locking mechanism enables the syringe to self-align with the syringe port for locking engagement upon insertion of the syringe into the syringe port and to axially eject the syringe from the port upon rotational disengagement of the syringe from the port.