Abstract:
A display substrate has blocking structures. The display substrate includes a base substrate, a display structure on a display area of the base substrate, at least one blocking structure on a peripheral area around the display area of the base substrate, and a first water-blocking layer on the substrate. The first water-blocking layer may cover the display structure and the at least one blocking structure. The blocking structure may be configured to block cracks generated on the first water-blocking layer at a side of the blocking structure opposite from the display area from propagating to the display area.
Abstract:
The present disclosure is related to a display substrate. The display substrate may include a base substrate, a display structure on a display area of the base substrate, at least one blocking structure on a peripheral area around the display area of the base substrate, and a first water-blocking layer on the substrate. The first water-blocking layer may cover the display structure and the at least one blocking structure. The blocking structure may be configured to block cracks generated on the first water-blocking layer at a side of the blocking structure opposite from the display area from propagating to the display area.
Abstract:
The present disclosure is related to a display substrate. The display substrate may include a base substrate, a display structure on a display area of the base substrate, at least one blocking structure on a peripheral area around the display area of the base substrate, and a first water-blocking layer on the substrate. The first water-blocking layer may cover the display structure and the at least one blocking structure. The blocking structure may be configured to block cracks generated on the first water-blocking layer at a side of the blocking structure opposite from the display area from propagating to the display area.
Abstract:
An evaporation coating apparatus comprising a heating unit (3) and a cylindrical member (1) disposed within the heating unit (3), wherein the cylindrical member (1) comprises a hollow sleeve (13) and a barrel (12) disposed at an inner side of the hollow sleeve (13) in a fitting manner; wherein a top end area of the hollow sleeve (13) is provided with a first evaporation hole (131), and an external surface of the hollow sleeve (13) is provided with an internal heater strip (4) connected to a control unit; wherein an external surface of the barrel (12) is provided with a groove (1′) extending along an axial central line of the barrel (12), the groove (1′) is provided with a plurality of compartments (11) arranged at interval space, and each of the compartments (11) is provided with a crucible (2); wherein the crucible (2) comprises a main body (21) which is disposed within the compartment (11) and sealed all around with one side opened, and a cover (22) which is connected to the main body (21) in a fitting manner and provided with a second evaporation hole (221) corresponding to the first evaporation hole (131); and wherein the heating unit (3) has a hollow columnar structure, and an external surface of the heating unit (3) is provided with an external heater strip (5) and a nozzle (31) which is corresponding to the first evaporation hole (131). The evaporation coating apparatus is mainly configured to manufacture large-sized displays and can improve the uniformity of film-forming with organic material on the surface of the substrate.
Abstract:
Disclosed are a touch display panel and a manufacturing method thereof, the touch display panel includes an array substrate and an opposed substrate disposed oppositely; a set of first electrode lines parallel to each other disposed on the array substrate or the opposed substrate; a set of second electrode lines parallel to each other disposed on the array substrate or the opposed substrate and arranged to cross the first electrode lines. The first electrode lines and the second electrode lines have no electrical connection therebetween, and the array substrate or the opposed substrate comprises a black matrix; the first electrode lines and/or the second electrode lines correspond to positions of the black matrix and the first electrode lines and/or the second electrode lines corresponding to positions of the black matrix are metal electrode lines.
Abstract:
A photoelectric sensor, comprising: a first thin film transistor (T1) for converting a photo signal into an electrical signal; a second thin film transistor (T2) for performing an integration operation on the electrical signal; a third thin film transistor (T3) for reading the electrical signal; and a first capacitor (C1) for storing an energy of the electrical signal, wherein a drain electrode of the first thin film transistor (T1) is connected to one end of the first capacitor (C1) and a source electrode of the third thin film transistor (T3); a source electrode of the first thin film transistor (T1) is connected to a drain electrode of the second thin film transistor (T2); a gate electrode of the first thin film transistor (T1) is supplied with a bias signal; wherein a gate electrode of the second thin film transistor (T2) is supplied with an integration signal; a source electrode of the second thin film transistor (T2) is connected to a high level end of a power source; the other end of the first capacitor (C1) is connected to a low level end of the power source; and wherein a gate electrode of the third thin film transistor (T3) is supplied with a scan signal; a drain electrode of the third thin film transistor (T3) is configured to output the read electrical signal.
Abstract:
A thin film transistor, a manufacturing method thereof, an array substrate and a display device are provided. The method for manufacturing the thin film transistor including: forming an active layer; forming an etch barrier layer on the active layer at a position for forming interlayer via holes subsequently; forming an insulating layer on the active layer and the etch barrier layer, and forming the interlayer via holes in the insulating layer to expose the etch barrier layer.
Abstract:
A photoelectric sensor, comprising: a first thin film transistor (T1) for converting a photo signal into an electrical signal; a second thin film transistor (T2) for performing an integration operation on the electrical signal; a third thin film transistor (T3) for reading the electrical signal; and a first capacitor (C1) for storing an energy of the electrical signal, wherein a drain electrode of the first thin film transistor (T1) is connected to one end of the first capacitor (C1) and a source electrode of the third thin film transistor (T3); a source electrode of the first thin film transistor (T1) is connected to a drain electrode of the second thin film transistor (T2); a gate electrode of the first thin film transistor (T1) is supplied with a bias signal; wherein a gate electrode of the second thin film transistor (T2) is supplied with an integration signal; a source electrode of the second thin film transistor (T2) is connected to a high level end of a power source; the other end of the first capacitor (C1) is connected to a low level end of the power source; and wherein a gate electrode of the third thin film transistor (T3) is supplied with a scan signal; a drain electrode of the third thin film transistor (T3) is configured to output the read electrical signal.
Abstract:
The present disclosure provides a wavelength converting unit-containing substrate, wherein an additional bank is provided on a bank between adjacent sub-pixel regions for different colors. Further, an auxiliary bank may be provided between the additional bank and the bank. The present disclosure also provides a method for manufacturing the wavelength converting unit-containing substrate and a display panel comprising the wavelength converting unit-containing substrate.
Abstract:
A display module, a method of manufacturing the same, and a display device are provided. The display module comprises: a light guide plate; a blue light source, disposed at the light entering face of the light guide plate; and a display panel, disposed at a side of the light exiting face of the light guide plate, the display panel comprises a plurality of display units, and adjacent display units are spaced apart with a light shielding barrier wall; each display unit comprises a quantum dot unit and a liquid crystal unit arranged side by side, and the liquid crystal unit and the quantum dot unit are spaced apart with a transparent barrier wall; a side of the liquid crystal unit away from the light guide plate is provided with a first light shielding pattern.