Abstract:
Stents are provided which include geometric segments comprising radial elements and axial elements. Both the radial and axial elements are optionally characterized by a width and a thickness, and the widths and thicknesses of the radial and axial elements are capable of being fixed independently of one another, permitting the axial and radial flexibility of the stent to be controlled independently of one another.
Abstract:
Methods for draining pseudocysts and stent delivery systems for use therein are disclosed. An illustrative system may include a catheter shaft having an inflatable balloon affixed to a distal end region thereof. A cutting electrode may be disposed at the distal end of the system and at least one heating electrode may be disposed within the inflatable balloon. A self expandable stent may be disposed about the inflatable balloon. The stent may be formed of a shape memory polymer. The inflation fluid may be heated within the balloon to facilitate expansion of the stent.
Abstract:
Methods for draining pseudocysts and stent delivery systems for use therein are disclosed. An illustrative system may include a catheter shaft having an inflatable balloon affixed to a distal end region thereof. A cutting electrode may be disposed at the distal end of the system and at least one heating electrode may be disposed within the inflatable balloon. A self expandable stent may be disposed about the inflatable balloon. The stent may be formed of a shape memory polymer. The inflation fluid may be heated within the balloon to facilitate expansion of the stent.
Abstract:
Methods for draining pseudocysts and stent delivery systems for use therein are disclosed. An illustrative system may include a catheter shaft having an inflatable balloon affixed to a distal end region thereof. A cutting electrode may be disposed at the distal end of the system and at least one heating electrode may be disposed within the inflatable balloon. A self expandable stent may be disposed about the inflatable balloon. The stent may be formed of a shape memory polymer. The inflation fluid may be heated within the balloon to facilitate expansion of the stent.
Abstract:
Implantable medical devices and method for making and using implantable medical devices are disclosed. An example implantable medical device may include a tubular body having a plurality of openings formed therein. A filter layer may be disposed along an outer surface of the tubular body. The filter layer may include a shape memory material. The filter layer may be capable of allowing fluids to pass therethrough and may be resistant to tissue ingrowth.
Abstract:
Methods for draining pseudocysts and stent delivery systems for use therein are disclosed. An illustrative system may include a catheter shaft having an inflatable balloon affixed to a distal end region thereof. A cutting electrode may be disposed at the distal end of the system and at least one heating electrode may be disposed within the inflatable balloon. A self expandable stent may be disposed about the inflatable balloon. The stent may be formed of a shape memory polymer. The inflation fluid may be heated within the balloon to facilitate expansion of the stent.
Abstract:
Methods for draining pseudocysts and stent delivery systems for use therein are disclosed. An illustrative system may include a catheter shaft having an inflatable balloon affixed to a distal end region thereof. A cutting electrode may be disposed at the distal end of the system and at least one heating electrode may be disposed within the inflatable balloon. A self expandable stent may be disposed about the inflatable balloon. The stent may be formed of a shape memory polymer. The inflation fluid may be heated within the balloon to facilitate expansion of the stent.