Abstract:
Medical devices and methods for making and using medical devices are disclosed. An example medical device may include a catheter for use in cardiac mapping and/or ablation. The catheter may include an elongate catheter shaft having a distal ablation electrode region capable of ablating tissue. An electrode assembly may be coupled to the distal ablation electrode region. The electrode assembly may include a flexible circuit having one or more electrodes disposed thereon.
Abstract:
An open-irrigated ablation catheter system includes a catheter body, and an electrode tip body mounted on a distal portion of the catheter body. The electrode tip body includes a proximal end configured for connection to the catheter body and a wall defining an open interior region and including one or more irrigation ports. The wall is conductive for delivering radio frequency (RF) energy. The catheter system further includes a proximal insert positioned partially within the catheter body and at least partially within the proximal end of the electrode tip body. The proximal insert includes a fluid inlet for receiving a cooling fluid delivered via the catheter body. The proximal insert forms a flow path configured to direct the cooling fluid from the fluid inlet to cool the distal portion of the catheter body and to cool a junction of the catheter body and the electrode tip body.
Abstract:
An open-irrigated catheter system includes a catheter body and a tip assembly, coupled to a distal end of the catheter body. The tip assembly includes an exterior wall that is conductive for delivering radio frequency (RF) energy for an RF ablation procedure, and that defines an interior region. The exterior wall includes a number of proximal irrigation ports and a number of distal irrigation ports. At least one fluid chamber is defined within the interior region and is in fluid communication with at least one of the proximal irrigation ports and the distal irrigation ports. At least one fluid lumen extends from a fluid source, through the catheter body, to the tip assembly, and is in fluid communication with the at least one fluid chamber.
Abstract:
An open-irrigated catheter system includes a catheter body and a tip assembly, coupled to a distal end of the catheter body. The tip assembly includes an exterior wall that is conductive for delivering radio frequency (RF) energy for an RF ablation procedure, and that defines an interior region. The exterior wall includes a number of proximal irrigation ports and a number of distal irrigation ports. At least one fluid chamber is defined within the interior region and is in fluid communication with at least one of the proximal irrigation ports and the distal irrigation ports. At least one fluid lumen extends from a fluid source, through the catheter body, to the tip assembly, and is in fluid communication with the at least one fluid chamber.
Abstract:
An embodiment of an open-irrigated catheter system comprises a tip section, a distal insert, and mapping electrodes. The tip section has an exterior wall that defines an open interior region within the tip section. The exterior wall includes mapping electrode openings and irrigation ports. The exterior wall is conductive for delivering radio frequency (RF) energy for an RF ablation procedure. The irrigation ports are in fluid communication with the open interior region to allow fluid to flow from the open interior region through the irrigation ports. The distal insert is positioned within the tip section to separate the open region into a distal fluid reservoir and a proximal fluid reservoir. The mapping electrodes are positioned in the mapping electrode openings in the tip section.
Abstract:
Medical devices and methods for making and using medical devices are disclosed. An example medical device may include a catheter for use in cardiac mapping and/or ablation. The catheter may include an elongate catheter shaft having a distal ablation electrode region capable of ablating tissue. An electrode assembly may be coupled to the distal ablation electrode region. The electrode assembly may include a flexible circuit having one or more electrodes disposed thereon.
Abstract:
An open-irrigated ablation catheter system includes a catheter body, and an electrode tip body mounted on a distal portion of the catheter body. The electrode tip body includes a proximal end configured for connection to the catheter body and a wall defining an open interior region and including one or more irrigation ports. The wall is conductive for delivering radio frequency (RF) energy. The catheter system further includes a proximal insert positioned partially within the catheter body and at least partially within the proximal end of the electrode tip body. The proximal insert includes a fluid inlet for receiving a cooling fluid delivered via the catheter body. The proximal insert forms a flow path configured to direct the cooling fluid from the fluid inlet to cool the distal portion of the catheter body and to cool a junction of the catheter body and the electrode tip body.
Abstract:
Medical devices and methods for making and using medical devices are disclosed. An example medical device may include a catheter for use in cardiac mapping and/or ablation. The catheter may include an elongate catheter shaft having a distal ablation electrode region capable of ablating tissue. An electrode assembly may be coupled to the distal ablation electrode region. The electrode assembly may include a flexible circuit having one or more electrodes disposed thereon.
Abstract:
Medical devices and methods for using medical devices are disclosed. An example medical device may include an open-irrigated ablation catheter. The open-irrigated ablation catheter may include a catheter body, an electrode tip body with one or more irrigation ports at a distal end, and a proximal insert for providing cooling fluid to a proximal end of the electrode tip body.
Abstract:
An embodiment of an open-irrigated catheter system comprises a tip section, a distal insert, and mapping electrodes. The tip section has an exterior wall that defines an open interior region within the tip section. The exterior wall includes mapping electrode openings and irrigation ports. The exterior wall is conductive for delivering radio frequency (RF) energy for an RF ablation procedure. The irrigation ports are in fluid communication with the open interior region to allow fluid to flow from the open interior region through the irrigation ports. The distal insert is positioned within the tip section to separate the open region into a distal fluid reservoir and a proximal fluid reservoir. The mapping electrodes are positioned in the mapping electrode openings in the tip section.