摘要:
A light-emitting contact lens and a method and system for tracking a user's eye position using the light-emitting contact lens are disclosed. The eye position tracking can be used, for example, to allow the user to interact with a display device such that the position of the user's eye determines the image generated by the display device. Thus, as the user's eye moves, the image on the display device will be altered to represent the new position (e.g., viewing angle) of the user with regard to the display device.
摘要:
A light-emitting contact lens and a method and system for tracking a user's eye position using the light-emitting contact lens are disclosed. The eye position tracking can be used, for example, to allow the user to interact with a display device such that the position of the user's eye determines the image generated by the display device. Thus, as the user's eye moves, the image on the display device will be altered to represent the new position (e.g., viewing angle) of the user with regard to the display device.
摘要:
Solar cells attached to a contact lens are provided, as well as methods for making the solar cells and contact lenses. The solar cells have electrodes on only one side of the device, which facilitates attachment of the solar cell to a contact lens. In one embodiment, the solar cells are made using a “two sided” process. By using the two-sided process, solar cells of only a few microns in thickness can be fabricated. Such relatively thin solar cells can be incorporated into a contact lens without discomfort to the wearer. By providing an infinitely renewable power source on a contact lens, the solar cells enable the use of electronic components on the contact lens while eliminating the recharging or replacing issues that arise with batteries.
摘要:
Solar cells attached to a contact lens are provided, as well as methods for making the solar cells and contact lenses. The solar cells have electrodes on only one side of the device, which facilitates attachment of the solar cell to a contact lens. In one embodiment, the solar cells are made using a “two sided” process. By using the two-sided process, solar cells of only a few microns in thickness can be fabricated. Such relatively thin solar cells can be incorporated into a contact lens without discomfort to the wearer. By providing an infinitely renewable power source on a contact lens, the solar cells enable the use of electronic components on the contact lens while eliminating the recharging or replacing issues that arise with batteries.
摘要:
Apparatus, systems and methods employing contact lens as power source for powering a retinal implant are provided. In an aspect, a contact lens includes a substrate that forms at least part of a body of the contact lens and a circuit disposed on or within the substrate comprising. The circuit includes a power harvesting component configured to receive energy in a first form from an external power source and convert the energy from the first form to a second form and an energy transfer component configured to transmit the energy in the second form to device remote from the contact lens when the contact lens is worn over an eye.
摘要:
Contact lenses and methods of manufacturing contact lenses are provided. In one aspect, a method includes: forming a substrate having an uneven surface; providing a sensor at a first region of the substrate; providing a chip at a second region of the substrate; and encapsulating the substrate, sensor and chip in a polymer. The method also includes: patterning interconnections from the first region of the substrate to the second region of the substrate; and patterning metal pads proximate to the second region of the substrate. The chip can be provided on a metal pad. The uneven surface can be a sloped surface or one or more sloped channels in the substrate, and the channels can be wide enough to receive interconnections for the chip and to receive the chip. Further, the substrate can be ring-shaped and curved prior to encapsulation.
摘要:
An eyepiece for a HMD includes a waveguide, an ambient light polarizer, and a wire grid polarizer with a diffraction lens having a lens function patterned into the wire grid polarizer. Polarized image light is guided between eye-ward and ambient sides of the waveguide from a display source to a viewing region of the waveguide where the polarized image light is directed out of the waveguide through the eye-ward side. The viewing region passes ambient light incident on the ambient side through to the eye-ward side. The ambient light polarizer is disposed adjacent to the ambient side to polarize the ambient light into polarized ambient light having a second polarization orthogonal to the first polarization. The wire grid polarizer is disposed adjacent to the eye-ward side along the viewing region. The wire grid polarizer is oriented to applying the lens function to the polarized image light via diffraction.
摘要:
Apparatus, systems and methods for facilitating iris-scanning contact lenses and/or biometric identification employing iris scanning contact lenses are provided. In one implementation, the contact lens can include: a transparent substrate formed to cover at least a portion of an iris of an eye; and a circuit. The circuit can include: one or more light sensors disposed on or within the transparent substrate and that detects light filtered through the iris and incident on the one or more light sensors; readout circuitry, operably coupled to the one or more light sensors, that outputs information indicative of the light filtered through the iris and incident on the one or more light sensors; and a power component that supplies power to the readout circuitry. In various implementations, the contact lens can be employed in systems and/or methods associated with authentication and identification.
摘要:
A waveguide suitable in form factor and weight for use in a heads-up display or similar wearable display and a method of manufacturing the waveguide are disclosed. The waveguide comprises a waveguide body of light-weight, optically transparent solid material, such as plastic, with a series of micro structures embedded in the waveguide body at a top surface of the waveguide body. A first set of the micro structures near one end of the waveguide body serves to couple light into the waveguide, whereby a portion of the coupled light propagates subject to total internal reflection toward a second set of micro structures that reflects a portion of the propagated light out of the waveguide at a bottom surface of the waveguide body. The waveguide can deliver an image provided by an input light source to a human eye (or other detector) situated near the bottom surface of the waveguide body. In particular, the source image can be focused at infinity so that it appears in focus as viewed by the eye at the output of the waveguide. Methods for simple and inexpensive mass production of the waveguide are also disclosed.
摘要:
An apparatus for simultaneously imaging a subject and displaying computer generated image (“CGI”) light to the subject includes a display array and a photodetector array. The display array and the photodetector array are disposed on a same semiconductor die. The display array includes display pixels configured to selectively generate the CGI light to be sent along a forward optical path. The photodetector array is positioned to receive non-visible image light that is reflected by the subject and directed along a reverse optical path. The CGI light to be sent along the forward optical path travels in a substantially opposite direction as the non-visible image light directed along the reverse optical path.