Abstract:
Systems, method, apparatuses, and software are described for automatically detecting defects in financial transactions, automatically determining resolutions to the defects based on historical defect patterns, an interacting with customers to provide information and/or receive instructions regarding defects and how they should be resolved.
Abstract:
Embodiments of the invention include systems, methods, and computer-program products for dynamic resource management for managing payment exception processing and maximize work flow. In this way, the system may lift data from financial documents received from sources to allow for exception processing. The exceptions may include one or more irregularities such as bad micro line reads, outdated check stock, or misrepresentative checks that may result in a failure to match the check to an associated account for processing. As such, once an exception is identified during the processing the exception is directed to an appropriate resource for processing. The system monitors work flow nodes and resource experience to prevent bottlenecks or underutilization. Furthermore, the system employs awards and gamification models for exception processing.
Abstract:
Systems, computer program products, and methods are described herein for routing data processing among different processing channels based on source-error probabilities. The present invention is configured to receive a data processing job comprising at least one data processing item; determine a first source of the at least one data processing item; determine a source error probability associated with the first source; and based on the determined source error probability, route the data processing item for data processing to an automated data processing network or a manual data processing network.
Abstract:
Disclosed are systems, methods, and computer program products that provide for element level presentation of elements of a payment instrument for exceptions processing. More specifically, the invention involves identifying an exception element from an image of a financial document, determining the location of the exception element based on its coordinates within the image of the financial document, and providing a zoomed-in view of the exception element to the user along with information and resources to allow a user to conveniently conduct accurate analysis of the exception element. The system then receives a correct element from the user to replace the exception element, and then processes the financial document using the replaced correct element instead of the exception element.
Abstract:
A bot automatically compiles transaction information for a consumer from merchants that sell products in various categories and merchants that sell products in only a single category. The bot categorizes the consumer's purchases from the merchants and determines percentages of consumer spending in each category. The bot may obtain a category for purchases from merchants selling a single category of items based on a merchant identifier such as a merchant code. For other merchants, the bot may obtain category information from the merchant or from an analysis of a category code, or a product or service description or identifier. The categories and percentages of the consumer's purchases may be provided by the bot to the consumer or to a third party. The bot may provide special offers and promotions to a consumer based on the compiled category information and percentage spending by the consumer by category.
Abstract:
An ATM pre-registration tool allows a user to request an amount of cash from an ATM before traveling to that ATM. The pre-registration tool receivers a user's request and determines whether a specified ATM contains the requested cash. If the ATM does not contain the requested cash, the pre-registration tool informs the user that the ATM does not contain sufficient funds to fulfill the user's request. If the ATM contains the requested cash, the pre-registration tool instructs the ATM to reserve that cash for the user.
Abstract:
A system for performing secure maintenance on automated machines may include a maintenance management apparatus and an automated machine. The maintenance management apparatus is configured for scheduling the maintenance appointment for the automated machine, in response to scheduling the maintenance appointment and creating and communicating a maintenance security code to the automated machine. The automated machine is configured for receiving a request from a maintenance provider to initiate the maintenance appointment, validating the maintenance provider using the maintenance security code and providing access to a secure item storage unit, determining that the maintenance provider has completed the maintenance appointment, and communicating information associated with the maintenance appointment to the maintenance management apparatus and/or a computing device of the maintenance provider.
Abstract:
This disclosure illustrates that resource exchange requests may be identified and sent directly to ATMs. The service providers access the ATMs and are able to select the resource exchange request from the ATMs (e.g., electronically, or the like). The service providers transfer the resources at the ATMs, and reconcile the resources at the ATMs. The ATMs may send service provider and/or organization reconciliation notices confirming the reconciliations. In some embodiments, the reconciliation may be stored in a distributed ledger within a blockchain system.
Abstract:
Embodiments of the invention monitor node usage in a transaction processing system. Embodiments include accessing a dynamic mapping of transaction flow in the transaction processing system, the dynamic mapping including a plurality of transaction pathways interconnected by transaction nodes, wherein the transaction nodes represent an automated processing step or action taken by a manual station of the transaction processing system on transactions files that are received at the transaction nodes; wherein the transaction processing system processes a transaction file at a first node and stores information corresponding to the first node and the type of processing that occurred at the first node with the transaction file; determining that the transaction file was processed at the first node; accessing the transaction file to determine the type of processing that occurred at the first node; and performing an action related to the type of processing that occurred at the first node.
Abstract:
Embodiments of the invention include systems, methods, and computer-program products for predictive determination and resolution of an exception located on a negotiable instrument. The exception may be an indicia that includes data related to the payor, payment accounts, or payee. An indicia may not be identified successfully and thus be queued for exception processing. The exceptions may include one or more irregularities such as bad micro line reads, outdated check stock, or misrepresentative indicia points on a negotiable instrument that may result in a failure to match the check to an account for processing. Upon identifying an exception, the system retrieves historical transaction data associated with the resolved indicia. Subsequently, utilizing the resolved indicia, the system may determine a value for the exception identified based on the retrieved historical transaction data. Finally, the determined value may be stored with the negotiable instrument to complete the payment reconciliation process.