摘要:
In accordance with an embodiment of the present invention, a bandgap voltage reference circuit includes a plurality of circuit branches, a plurality of resistors and a plurality of switches. The plurality of switches are used to selectively change over time which of the resistors are connected to be within a first one of the circuit branches and which of the resistors are connected to be within a second one of the circuit branches, to thereby reduce the effects that long term drift of the resistors have on a bandgap voltage output (VGO) of the bandgap voltage reference circuit.
摘要:
In accordance with an embodiment of the present invention, a bandgap voltage reference circuit includes a group of X current sources, a plurality of circuit branches, and a plurality of switches. Each of the X current sources (where X≧3) produces a corresponding current that is substantially equal to the currents produced by the other current sources within the group. The plurality of circuit branches of the bandgap voltage reference circuit are collectively used to produce a bandgap voltage output (VGO). Each of the plurality of circuit branches receives at least one of the currents not received by the other circuit branches. The plurality of switches (e.g., controlled by a controller) selectively change over time which of the currents produced by the current sources are received by which of the plurality of circuit branches of the bandgap voltage reference circuit.
摘要:
Provided herein are circuits and methods to generate a voltage proportional to absolute temperature (VPTAT) and/or a bandgap voltage output (VGO). A circuit includes a group of X transistors. A first subgroup of the X transistors are used to produce a first base-emitter voltage (VBE1). A second subgroup of the X transistors are used to produce a second base-emitter voltage (VBE2). The VPTAT can be produced by determining a difference between VBE1 and VBE2. Which of the X transistors are in the first subgroup and used to produce the first base-emitter voltage (VBE1), and/or which of the X transistors are in the second subgroup and used to produce the second base-emitter voltage (VBE2), change over time. Additionally, a circuit portion can be used to generates a voltage complimentary to absolute temperature (VCTAT) using at least one of the X transistors. The VPTAT and the VCTAT can be added to produce the VGO.
摘要:
A bandgap voltage reference circuit includes a first circuit portion and a second circuit portion. The first circuit portion generates a voltage complimentary to absolute temperature (VCTAT). The second circuit portion generates a voltage proportional to absolute temperature (VPTAT) that is added to the VCTAT to produce a bandgap voltage reference output. The first circuit portion includes a plurality of delta base-emitter voltage (VBE) generators, connected as a plurality of stacks of delta VBE generators. Each delta VBE generator can include a pair of transistors that operate at different current densities and thereby generate a difference in base-emitter voltages (ΔVBE). The plurality of delta VBE generators within each stack are connected to one another, and the plurality of stacks of delta VBE generators are connected to one another, such that the ΔVBEs generated by the plurality of delta VBE generators are arithmetically added to produce the VPTAT.
摘要:
Ground skimming output stages that are designed to drive wideband signals with the ability to provide a high quality output signal all the way to the low supply rail are provided. In accordance with an embodiment of the present invention, the output stage of the present invention includes a translinear current controller, an output transistor and a current mirror. While not limited thereto, embodiments of the present invention only require a single positive power supply, consistent with the recent trend toward integrated circuits that only require a single low voltage power supply.
摘要:
A circuit for generating video synchronization timing signals includes a negative peak detector (FIG. 5) for following variations of a composite video signal (FIG. 1), rather than clamping the most negative voltage of the composite video signal. The negative peak detector provides a voltage level VTIP representative of the voltage at the synchronization tip of the composite video signal. A sample and hold circuit (700, 702, 704) is used to add an offset VSLICE to VTIP, VSLICE being a voltage level of the breezeway, color burst, or back porch segments of the composite video signal, or a combination of these segments. The sample and hold circuit generates a signal VREF, and is connected by a resistor divider (708,710) to the negative peak detector to form the signal VTIP+VSLICE provided to an amplifier (606) functioning as a comparator. The signal VSLICE+VTIP is compared in comparator (606) with the composite video signal to provide an overall circuit output. Buffering is provided at the input of the negative peak detector by amplifier (600) to reduce any DC offset from the diode of the negative peak detector. To prevent amplifier DC offset error voltages from affecting the perceived VSLICE level, an amplifier (800) can be connected in a first position TTIP as part of a negative peak detector to store VTIP on a capacitor, in a second position TH as part of a sample and hold circuit to store VREF on a capacitor, and in a third position TCOMP to compare VSLICE+VTIP measured from the capacitors with the composite video signal to generate the overall circuit output.
摘要:
A delay circuit is provided for use in a ring oscillator of a phase locked loop (PLL). The delay circuit includes a differential pair of NMOS transistors 102 and 103 with an NMOS transistor 101 providing the tail current for the differential pair. Complementary NMOS and PMOS load transistors 104,106 and 105, 107 provide loads for the differential transistor 102 and 103. Transistors 111-114 and 121-122 together with an amplifier 130 provide biasing for the delay device. The amplifier 130 has a non-inverting input set to VDD−VCLAMP. As configured, a constant output voltage swing from VDD to VDD−VCLAMP is provided at the outputs VOUT+ and VOUT− of the delay device, independent of a control voltage VCTL used to set the tail current. The NMOS load transistor 104, as opposed to the PMOS transistor 4 in FIG. 1, does not contribute to the gate parasitic capacitance enabling a high operation speed without consumption of more supply current. A wide frequency tuning range of a ring oscillator using the delay circuit of FIG. 2 is provided because the operating frequency for a ring oscillator will be directly proportional to the tail current through transistor 101.
摘要:
A current feedback amplifier having circuitry in its input stage for matching the error current created due to a parasitic capacitance (C.sub.IN) on the negative, or inverting input terminal (V.sub.IN-). Additional circuitry in the input stage subtracts the matching current from the error current created by C.sub.IN to cancel the error current due to C.sub.IN and thus eliminate the peaking of gain at high frequencies caused by C.sub.IN. In addition to cancellation of C.sub.IN errors, the subtraction process in the input stage enables cancellation of error current resulting from bias current common mode rejection (ICMR) as well as component dissimilarities created during processing.
摘要:
An apparatus and method for controlling the operation of a utility device, such as a cold cathode fluorescent lamp that is powered in accordance with a pulse width modulation (PWM) signal, includes an analog sensor which monitors the utility device to derive an output signal representative of the PWM signal. An integrating analog-to-digital converter (ADC), which is coupled to the sensor and has its operation synchronized with an integral multiple of the period of the PWM signal, produces an output representative of an average of the output of the utility device.
摘要:
Provided herein are circuits and methods to generate a voltage proportional to absolute temperature (VPTAT) and/or a bandgap voltage output (VGO). A circuit includes a group of X transistors. A first subgroup of the X transistors are used to produce a first base-emitter voltage (VBE1). A second subgroup of the X transistors are used to produce a second base-emitter voltage (VBE2). The VPTAT can be produced by determining a difference between VBE1 and VBE2. Which of the X transistors are in the first subgroup and used to produce the first base-emitter voltage (VBE1), and/or which of the X transistors are in the second subgroup and used to produce the second base-emitter voltage (VBE2), change over time. Additionally, a circuit portion can be used to generates a voltage complimentary to absolute temperature (VCTAT) using at least one of the X transistors. The VPTAT and the VCTAT can be added to produce the VGO.