摘要:
A method for effectively generating limited trench width isolation structures without incurring the susceptibility to dishing problems to produce high quality ICs employs a computer to generate data representing a trench isolation mask capable of being used to etch a limited trench width isolation structure about the perimeter of active region layers, polygate layers, and Local Interconnect (LI) layers. Once the various layers are defined using data on the computer and configured such that chip real estate is maximized, then the boundaries are combined using, for example, logical OR operators to produce data representing an overall composite layer. Once the data representing the composite layer is determined, the data is expanded evenly outward in all horizontal directions by a predetermined amount, .lambda., to produce data representing a preliminary expanded region. Any narrow regions are then merged together with the preliminary expanded region to produce data representing a final expanded region, which is used to produce a mask employed to produce an even width trench about the perimeter of the composite layer. The computer then generates the mask according to the results achieved and the isolation trenches are etched. The resulting isolation trenches prevent short-circuits from occurring between the various electrical devices on the semiconductor device.
摘要:
An insulated trench isolation structure with large and small trenches of differing widths is formed in a semiconductor substrate with improved planarity using a simplified reverse source/drain planarization mask. Embodiments include forming large trenches and refilling them with an insulating material which also covers the substrate surface, masking the areas above the large trenches, etching to remove substantially all of the insulating material on the substrate surface and polishing to planarize the insulating material above the large trenches. Small trenches and peripheral trenches surrounding the large trenches are then formed, refilled with insulating material, and planarized. Since the large trenches are formed prior to and separately from the small trenches, etching can be carried out after the formation of a relatively simple planarization mask over only the large trenches, and not the small trenches. The use of a planarization mask with relatively few features having a relatively large geometry avoids the need to create and implement a complex and critical mask, thereby reducing manufacturing costs and increasing production throughput. Furthermore, because the large and small trenches are not polished at the same time, overpolishing is avoided, thereby improving planarity and, hence, the accuracy of subsequent photolithographic processing.
摘要:
An insulated trench isolation structure with large and small trenches of differing widths is formed in a semiconductor substrate using a simplified reverse source/drain planarization mask. Embodiments include forming trenches and refilling them with an insulating material which also covers a main surface of the substrate, polishing to remove an upper portion of the insulating material and to planarize the insulating material above the small trenches, furnace annealing to densify and strengthen the remaining insulating material, masking the insulating material above the large trenches, isotropically etching the insulating material, and polishing to planarize the insulating material. Since the insulating material is partially planarized and strengthened prior to etching, etching can be carried out after the formation of a relatively simple planarization mask over only the large trenches, and not the small trenches. Because the features of the planarization mask are relatively few and have a relatively large geometry, the present invention avoids the need to create and implement a critical mask, enabling production costs to be reduced and manufacturing throughput to be increased.
摘要:
An insulated trench isolation structure is formed by ion implanting impurities proximate to the trench edges for enhancing the oxidation rate and, hence, increasing the thickness of the oxide at the trench edges. Embodiments include ion implanting impurities prior to growing an oxide liner. The resulting thick oxide on the trench edges avoids overlap of a subsequently deposited polysilicon layer and breakdown problems attendant upon a thinned gate oxide at the trench edges.
摘要:
An insulated trench isolation structure is formed by ion implanting impurities proximate the trench edges to enhance the silicon oxidation rate and, hence, increase the thickness of the resulting oxide at the trench edges. Embodiments include masking and etching a barrier nitride layer, forming protective spacers on portions of the substrate corresponding to subsequently formed trench edges, etching the trench, removing the protective spacers, ion implanting impurities into those portions of the substrate previously covered by the protective spacers, and then growing an oxide liner. The resulting oxide formed on the trench edges is thick due to the enhanced silicon oxidation rate, thereby avoiding overlap of a subsequently deposited polysilicon layer and breakdown problems attendant upon a thinned gate oxide at the trench edges.
摘要:
Accurate photolighographic processing is achieved employing a stepper global alignment structure enabling formation thereon of a substantially transparent layer having a substantially planar upper surface. Embodiments include a set of global alignment marks comprising spaced apart trenches, each trench segmented into a plurality of narrow trenches spaced apart by uprights and forming a dummy topographical area of narrow trenches surrounding the set of alignment marks. The segmented trenches and the dummy topographical area effectively provide a substantially uniform topography enabling deposition of a transparent layer without steps and effective local planarization. Since the upper surface of the transparent layer is substantially planar, layers of material deposited on the transparent layer during subsequent processing also have a substantially planar upper surface, thereby enabling transmission of the signal produced by the alignment marks to the stepper with minimal distortion.
摘要:
A shallow trench isolation structure is formed which enables the growth of a high quality gate oxide at the trench edges. Embodiments include forming a photoresist mask directly on a pad oxide layer which, in turn, is formed on a main surface of a semiconductor substrate or an epitaxial layer on a semiconductor substrate. After masking, the substrate is etched to form a trench, an oxide liner is grown in the trench surface, and a polish stop layer is deposited over the oxide liner and the pad oxide layer. The polish stop layer is then masked to the trench edges, and the polish stop in the trench etched away. The trench is then filled with an insulating material, the insulating material is planarized, and the polish stop is removed by etching. Thus, the oxide liner is allowed to grow on the trench edges without the restraint of a polish stop, resulting in a thick, rounded oxide on the trench edges. Additionally, no polish stop layer remains in the trench to cause unwanted electrical effects.
摘要:
An insulated trench isolation structure is formed in a semiconductor substrate omitting a barrier nitride polish stop layer, thereby simplifying the formation of the trench isolating structure, and enabling the substrate to be polished substantially flush with the trench fill. The planar trench fill-substrate interface avoids additional topography, thereby facilitating application of, and enhancing the accuracy of, photolithographic techniques in forming features with minimal dimensions.
摘要:
A shallow trench isolation structure is formed which enables the growth of a high quality gate oxide at the trench edges and protects the field oxide from gouging during post-gate processing, such as during the local interconnect etch, thereby allowing the formation of high-quality implanted junctions. Embodiments include forming a photoresist mask directly on a pad oxide layer which, in turn, is formed on a main surface of a semiconductor substrate or an epitaxial layer on a semiconductor substrate. After masking, the substrate is etched to form a trench, an oxide liner is grown in the trench surface, and a polish stop layer is deposited in the trench on the oxide liner and on the pad oxide layer. The polish stop layer is then masked to the trench edges, and the polish stop in the trench is anisotropically etched, to remove the polish stop at the bottom of the trenches leaving a portion overlying the side surfaces and edges of the trench on the oxide liner. The trench is then filled with an insulating material, the insulating material is planarized, and the polish stop over the pad oxide layer is removed by anisotropic etching. Thus, the oxide liner is allowed to grow on the trench edges without the restraint of a polish stop, resulting in a thick, rounded oxide on the trench edges. The portion of the polish stop remaining in the trench and on the oxide liner at the trench edges serves as a protective spacer, protecting the field oxide from erosion during subsequent processing steps.
摘要:
An insulated trench isolation structure with large and small trenches of differing widths is formed in a semiconductor substrate without a planarization mask or etch. Embodiments include forming trenches and refilling them with an insulating material which also covers the substrate surface, followed by polishing to remove an upper portion of the insulating material and to planarize the insulating material above the small trenches. A second layer of insulating material is then deposited to fill seams in the insulating material above the small trenches and to fill steps in the insulating material above the large trenches. The insulating material is then planarized. Since the insulating material is partially planarized by the first polish and the seams and steps are filled by the second deposition, the resulting topography of the upper surface of the second layer of insulating material is small enough to enable a direct final polish without the need to create and implement a planarization mask and to perform an etch and mask removal, thereby reducing manufacturing costs and increasing production throughput.