摘要:
A polyphenylene sulfide multifilament yarn having a filament linear density of 5 dtex to 30 dtex, an overall linear density of 500 dtex to 2500 dtex, a breaking tenacity in the range of 50 cN/tex to 80 cN/tex and an elongation at break of 8% to 16% for a yarn with a breaking tenacity in the range of 60 cN/tex to 80 cN/tex and an elongation at break of 16% to 30% for a yarn with a breaking tenacity in the range of 50 cN/tex to 60 cN/tex.
摘要:
The present invention relates to a process for producing a polyphenylene sulfide multifilament yarn, a polyphenylene sulfide multifilament yarn and the use of a polyphenylene sulfide multifilament yarn. The process for producing a polyphenylene sulfide multifilament yarn is characterized in that only after time period between 0.1 sec and 0.3 sec after leaving the spinneret the filaments of the spun yarn are subjected to an active cooling stage. The Polyphenylene sulfide multifilament yarn having a filament linear density of 5 dtex to 30 dtex, an overall linear density of 500 dtex to 2500 dtex, a breaking tenacity in the range of 50 cN/tex to 80 cN/tex and an elongation at break of 8% to 16% for a yarn with a breaking tenacity in the range of 60 cN/tex to 80 cN/tex and an elongation at break of 16% to 30% for a yarn with a breaking tenacity in the range of 50 cN/tex to 60 cN/tex.
摘要:
The present invention relates to a process for producing a polyphenylene sulfide multifilament yarn, a polyphenylene sulfide multifilament yarn and the use of a polyphenylene sulfide multifilament yarn. The process for producing a polyphenylene sulfide multifilament yarn is characterized in that only after time period between 0.1 sec and 0.3 sec after leaving the spinneret the filaments of the spun yarn are subjected to an active cooling stage. The Polyphenylene sulfide multifilament yarn having a filament linear density of 5 dtex to 30 dtex, an overall linear density of 500 dtex to 2500 dtex, a breaking tenacity in the range of 50 cN/tex to 80 cN/tex and an elongation at break of 8% to 16% for a yarn with a breaking tenacity in the range of 60 cN/tex to 80 cN/tex and an elongation at break of 16% to 30% for a yarn with a breaking tenacity in the range of 50 cN/tex to 60 cN/tex.
摘要:
A continuous spin-draw-winding process to prepare a drawn polyester yarn suitable for use in high-speed tires and run-flat tires having high energy to break in combination with a good dimensional stability, including extruding molten polyester through spinning holes in a spinneret to form a bundle of molten spun filaments, solidifying the spun filaments by a gaseous cooling medium, fixing the spinning speed of the solidified filaments at a first godet in the range of 4050 to 5000 m/min, drawing the solidified filaments at a draw ratio less than 1.75 to form drawn filaments. The drawn polyester yarn has a high amorphous orientation distribution, a high crystallinity and a coarse structure. Dipped cords including such polyester drawn yarns exhibit excellent dimensional stability at higher temperatures.
摘要:
A process to manufacture a reinforcing element provided with a cured adhesive composition, a reinforcing element provided with a cured adhesive composition, and a rubber article including the reinforcing element. The manufacturing process includes the steps of providing a reinforcing element, treating the reinforcing element with a composition that includes an aqueous dispersion of components, optionally drying the treated reinforcing element, and curing at least two of the components.
摘要:
A method for spinning a multifilament yarn from a thermoplastic material, where the filament bundle is cooled below the spinneret in a first cooling zone, first of all by means of at least one transverse blowing operation with a gaseous cooling medium and by means of an extraction means for the gaseous cooling medium which lies opposite said transverse blowing means, and subsequently the filament bundle is cooled further in a second cooling zone below the first cooling zone by automatic suction of gaseous cooling medium which is situated in the vicinity of the filament bundle.
摘要:
A method is provided for spinning a multifilament thread from a thermoplastic material, including the steps of extruding the melted material through a spinneret with a plurality of spinneret holes into a filament bundle with a plurality of filaments, winding the filaments as thread after solidifying, and cooling the filament bundle beneath the spinneret, whereby in a first cooling zone the gaseous cooling medium is directed in such a way that it flows through the filament bundle transversely, the cooling medium leaving the filament bundle practically completely on the side opposite the inflow side, and in a second cooling zone beneath the first cooling zone, the filament bundle being cooled further essentially through self-suction of the gaseous cooling medium surrounding the filament bundle.
摘要:
A method is provided for spinning a multifilament thread from a thermoplastic material, including the steps of extruding the melted material through a spinneret with a plurality of spinneret holes into a filament bundle with a plurality of filaments, winding the filaments as thread after solidifying, and cooling the filament bundle beneath the spinneret, whereby in a first cooling zone the gaseous cooling medium is directed in such a way that it flows through the filament bundle transversely, the cooling medium leaving the filament bundle practically completely on the side opposite the inflow side, and in a second cooling zone beneath the first cooling zone, the filament bundle being cooled further essentially through self-suction of the gaseous cooling medium surrounding the filament bundle.
摘要:
Disclosed is a method of making a graded index polymer optical fiber comprising a multicomponent spinning process employing spinning masses comprising a core spinning mass and a sheath spinning mass, the spinning masses comprising a polymer, a polymerizable monomer, and an initiator. The monomer in the core spinning mass has a higher refractive index than the monomer in the sheath spinning mass, and the spinning masses are extruded and cured. The spinning conditions are chosen such that the monomers are substantially contained within the fiber during extrusion and curing and the total of the spinning masses is intrinsically thread forming. The spinning masses may be extruded in, e.g., water. The core and the sheath polymer may be, e.g., poly(methyl methacrylate); the core monomer may be methyl methacrylate, and the sheath monomer may be 2,2,3,3-tetrafluoropropyl methacrylate; or the core and the sheath polymer may be, e.g., poly(styrene-co-acrylonitrile); the core monomer may be benzyl methacrylate, and the sheath monomer may be methyl methacrylate. The spinning masses are solutions of the polymer in the monomer having a polymer concentration of from 20 to 70% by weight.
摘要:
Fibers of an alternating carbon monoxide-ethylene polymer having a molecular weight of at least 100,000 g/mole and a birefringence of at least 650.times.10.sup.-4 can be formed by first extruding a solution of the polymer in a mixed solvent system comprising an aromatic alcohol which is free of alkyl substituents on the aromatic nucleus and another solvent which is a liquid and is other than an aromatic alcohol. The extrusion into the solvent is at an extrusion rate of at least 1 m/min and forms a solvent-containing article which is then cooled or coagulated in a non-solvent for the polymer. The solvent is removed by extraction with a non-solvent for the polymer which is soluble in the mixture of solvents and the resulting article is drawn at a temperature of at least 180.degree. C.