摘要:
A system for converting hydrocarbon materials into a product includes a hydrocarbon feedstock source, a process gas source, an energy generator, and a cylindrical reaction chamber. The reaction chamber has a conductive inner surface that forms a resonant cavity. The resonant cavity is configured to support a standing TM010 electromagnetic wave. The reaction chamber is also configured to receive feedstock from the feedstock source, process gas from the process gas source, and convert the feedstock into a product stream in the presence of the TM010 electromagnetic wave.
摘要:
A system for converting hydrocarbon materials into a product includes a hydrocarbon feedstock source, a process gas source, an energy generator, and a cylindrical reaction chamber. The reaction chamber has a conductive inner surface that forms a resonant cavity. The resonant cavity is configured to support a standing TM010 electromagnetic wave. The reaction chamber is also configured to receive feedstock from the feedstock source, process gas from the process gas source, and convert the feedstock into a product stream in the presence of the TM010 electromagnetic wave.
摘要:
Hydroprocessing can be performed at low pressure using acoustic energy. For example, hydroprocessing a feedstock having one or more hydrocarbon compounds carried in, or mixed with, a transport gas involves flowing the feedstock through a reaction zone in a reactor that has a bulk pressure less than 68 atm and applying acoustic energy through the reaction zone. The hydrocarbon compounds are chemically reacted with a hydrogen source in the presence of a catalyst, wherein the reacting occurs in the reaction zone.
摘要:
Conversion of heavy fossil hydrocarbons (HFH) to a variety of value-added chemicals and/or fuels can be enhanced using microwave (MW) and/or radio-frequency (RE) energy. Variations of reactants, process parameters, and reactor design can significantly influence the relative distribution of chemicals and fuels generated as the product. In one example, a system for flash microwave conversion of HFH includes a source concentrating microwave or RF energy in a reaction zone having a pressure greater than 0.9 atm, a continuous feed having HFH and a process gas passing through the reaction zone, a HFH-to-liquids catalyst contacting the HFH in at least the reaction zone, and dielectric discharges within the reaction zone. The HFH and the catalyst have a residence time in the reaction zone of less than 30 seconds. In some instances, a plasma can form in or near the reaction zone.
摘要:
Conversion of heavy fossil hydrocarbons (HFH) to a variety of value-added chemicals and/or fuels can be enhanced using microwave (MW) and/or radio-frequency (RE) energy. Variations of reactants, process parameters, and reactor design can significantly influence the relative distribution of chemicals and fuels generated as the product. In one example, a system for flash microwave conversion of HFH includes a source concentrating microwave or RF energy in a reaction zone having a pressure greater than 0.9 atm, a continuous feed having HFH and a process gas passing through the reaction zone, a HFH-to-liquids catalyst contacting the HFH in at least the reaction zone, and dielectric discharges within the reaction zone. The HFH and the catalyst have a residence time in the reaction zone of less than 30 seconds. In some instances, a plasma can form in or near the reaction zone.
摘要:
Conversion of heavy fossil hydrocarbons (HFH) to a variety of value-added chemicals and/or fuels can be enhanced using microwave (MW) and/or radio-frequency (RF) energy. Variations of reactants, process parameters, and reactor design can significantly influence the relative distribution of chemicals and fuels generated as the product. In one example, a system for flash microwave conversion of HFH includes a source concentrating microwave or RF energy in a reaction zone having a pressure greater than 0.9 atm, a continuous feed having HFH and a process gas passing through the reaction zone, a HFH-to-liquids catalyst contacting the HFH in at least the reaction zone, and dielectric discharges within the reaction zone. The HFH and the catalyst have a residence time in the reaction zone of less than 30 seconds. In some instances, a plasma can form in or near the reaction zone.
摘要:
Conversion of heavy fossil hydrocarbons (HFH) to a variety of value-added chemicals and/or fuels can be enhanced using microwave (MW) and/or radio-frequency (RF) energy. Variations of reactants, process parameters, and reactor design can significantly influence the relative distribution of chemicals and fuels generated as the product. In one example, a system for flash microwave conversion of HFH includes a source concentrating microwave or RF energy in a reaction zone having a pressure greater than 0.9 atm, a continuous feed having HFH and a process gas passing through the reaction zone, a HFH-to-liquids catalyst contacting the HFH in at least the reaction zone, and dielectric discharges within the reaction zone. The HFH and the catalyst have a residence time in the reaction zone of less than 30 seconds. In some instances, a plasma can form in or near the reaction zone.
摘要:
Hydroprocessing can be performed at low pressure using acoustic energy. For example, hydroprocessing a feedstock having one or more hydrocarbon compounds carried in, or mixed with, a transport gas involves flowing the feedstock through a reaction zone in a reactor that has a bulk pressure less than 68 atm and applying acoustic energy through the reaction zone. The hydrocarbon compounds are chemically reacted with a hydrogen source in the presence of a catalyst, wherein the reacting occurs in the reaction zone.
摘要:
Hydroprocessing can be performed at low pressure using acoustic energy. For example, hydroprocessing a feedstock having one or more hydrocarbon compounds carried in, or mixed with, a transport gas involves flowing the feedstock through a reaction zone in a reactor that has a bulk pressure less than 68 atm and applying acoustic energy through the reaction zone. The hydrocarbon compounds are chemically reacted with a hydrogen source in the presence of a catalyst, wherein the reacting occurs in the reaction zone.
摘要:
Hydroprocessing can be performed at low pressure using acoustic energy. For example, hydroprocessing a feedstock having one or more hydrocarbon compounds carried in, or mixed with, a transport gas involves flowing the feedstock through a reaction zone in a reactor that has a bulk pressure less than 68 atm and applying acoustic energy through the reaction zone. The hydrocarbon compounds are chemically reacted with a hydrogen source in the presence of a catalyst, wherein the reacting occurs in the reaction zone.