Abstract:
A color measuring device includes a lighting arrangement for a measurement field of a measurement object to be measured, a pick-up arrangement for detecting the measurement light reflected back from the measurement field and for converting it into corresponding electric signals, an electronic circuit for controlling operation of the color measuring device and for processing and evaluating the electric signals, and a display for displaying measurement results. The lighting arrangement has a lamp ring with three identical lamp groups for illuminating the measurement field from a predefined range of angles of incidence. The pick-up arrangement has a digital camera which creates an image of the measured measurement field. The electronic circuit is designed to switch the light sources of the lamp groups on sequentially, and the camera creates a separate image of the measurement field for every switched-on light source.
Abstract:
The light emitted by a source of light is passed by means of optical fibers or bundles of optical fibers in lines over a master to be scanned. In the process, an orifice of a disk rotated by a motor sequentially projects the light onto one optical fiber or bundle of fibers leading to the master. The light exiting from the light emitting end of the optical fiber or bundle of optical fiber illuminates the master. On the other side of the master a corresponding optical fiber or bundle of fibers receives the light coming from the master and conducts it to a receiver.
Abstract:
The photoelectric scanner is equipped with two circular disks having aligned light passage orifices and mounted on a common drive shaft. Lenses are located in these orifices, the focal points of which are in the plane of the copy master to be scanned. The beam emitted by the source of copying light and parallelized by the condenser arrives through the curved slot of a stationary diaphragm on the lens instantaneously moving through the area of the slot and is focused in the plane of the copy master. From the lens synchronously running on the other side of the copy master, the parallelized beam of light arrives through the curved slot of a subsequent stationary diaphragm and a condenser on a receiving and detection unit with dichroitic mirrors, absorption filters and photoelectric detectors. These detectors convert the optical signals into electric signals, which are conducted to the evaluating electronic device.
Abstract:
The present invention provides a method of digitally generating, via the use of a computer, data indicative of a synthesized appearance of a simulated material having physically plausible appearance attributes. The method includes determining a set of data indicative of the synthesized appearance of the simulated material based at least in part on data associated with the physically tangible source material and at least in part on data of measured attributes of the physically tangible reference material.
Abstract:
A hand-held measurement device for appearance analyses includes a measurement array which comprises a number of illumination means for applying illumination light to a measurement field in at least three illumination directions and a number of pick-up means for capturing the measurement light in at least one observation direction. The illumination directions and the observation directions lie in a common system plane. At least one pick-up means is embodied to spectrally gauge the measurement light in a locally integral way, and at least one imaging pick-up means is embodied to gauge the measurement light in terms of colour in a locally resolved way. The spectral pick-up means and the locally resolving pick-up means are arranged such that they receive the measurement light reflected by the measurement field under the same observation conditions and in particular from the same observation direction.
Abstract:
A spectrophotometer for integration purposes includes a measurement head with an illumination arrangement (10) including at least one fight source (11) for the illumination of a measurement object located in a measurement plane (M) under an angle of incidence of at least 45°, with a pick-up arrangement for capturing the measurement light remitted by the measurement object under an angle of reflection of the essentially 0° relative to the perpendicular of the measurement plane, a spectrometer arrangement (30) with an entry slot (31) for the spectral splitting of the measurement fight received through the entry slot and captured and with a photoelectric receiver arrangement (32) exposed to the spectrally split measurement light for conversion of the individual spectral portions of the measurement light into corresponding electrical signals.
Abstract:
A color measurement device includes a color measurement channel (20,30) and a control (C), which forms color measurement values from the measurement signals of the color measurement channel and from stored white calibration data. It further includes correction means in order to calculate or correct the color measurement values depending on different distances (a) and/or angles (α) to the measurement object. Because of the special measurement value correction, the color measurement device is especially suited for contactless measurement applications with variable distances and angle orientations relative to the measurement object.
Abstract:
To measure the colour of samples printed on a substrate containing brightener, a first spectral proportion of the total spectral reflection factor of the sample is measured by illuminating the sample with light having no UV element. From this first spectral proportion, a spectral correction factor is calculated making allowance for the characterisation data of the brightened substrate and the spectral properties of a selected type of illuminating light. The spectral correction factor is added to the first spectral proportion in order to obtain the total spectral reflection factor of the measured sample. The total spectral reflection factor is then evaluated for measuring and control purposes, in particular for calculating colour values of the sample. The characterising data of the substrate is determined on the basis of measurements taken with illuminating light with no UV element and with UV light only on a limited set of measurement samples, especially on the non-printed substrate only (paper whiteness). The measuring method has the advantages of a double measurement, which it requires physically but on a significantly reduced sample set only, which speeds up the measuring procedure considerably. The measurements needed for characterising the substrate may also be run with a separate measuring device, so that the measuring method can easily be implemented in existing colour measuring devices with interchangeable measuring filters or different light sources.
Abstract:
For the production of a photographic print of an original present in electronic format, optical representations (D) are produced from sequentially changing strip-shaped portions of the original by way of an electro optical, pixel wise operating converter device (3) and these optical representations (D) are projected onto a strip-shaped exposure region (E) on the copy material (P), whereby the strip-shaped exposure region (E) and the copy material (P) are moved relative to one another and at an essentially constant speed in a direction transverse to the longitudinal extent of the strip-shaped exposure regions (E), so that successively the image information of the whole original is exposed onto the total available surface of the copy material (P). Each strip-shaped portion of the original is thereby divided into at least two strip-shaped sections positioned one behind the other in longitudinal direction of the portion, separate optical representations are produced from the sections by way of the electro optical converter device (3) and these separate optical representations of the sections are projected onto the copy material (P) in at least two strip-shaped partial exposure regions (E1, E2) which are positioned one behind the other in longitudinal direction and together form the strip-shaped exposure region (E). A digital micro mirror field is preferably used as the electro optical converter device (3). In this manner, large format photographic prints of high quality can be produced with relatively low constructive cost by using conventional converter devices.
Abstract:
A device for point-form photoelectric scanning of a transparent object to be measured is disclosed and is provided with a transport arrangement for transporting an object to be measured. An illuminating arrangement exposes the object to measuring light in a line-shaped measuring line extending across the object transverse to the transport direction. A collector arrangement collects measuring light passed through the object in the area of the measuring line. A photoelectric converter arrangement, optically connected with the collector arrangement, converts measuring light passed through the object into corresponding electrical signals. The collector arrangement includes a multiplicity of light conductors, an optical multiplexer with multiple inputs corresponding in number to the multiplicity of the light conductors, and an output. An output end of each of the light conductors is connected with one of the inputs of the optical multiplexer and an input end of each light conductor is positioned along the measuring line to receive passed through measuring light from point form regions of the object to be measured. The optical multiplexer includes a rotatable optical commutator driven by a motor which sequentially and optically connects the inputs of the multiplexer with the output of the multiplexer. The illuminating arrangement includes a light source and a light guide body which has an input surface and an output surface and guides light from the light source to the object to be measured.