Abstract:
An automated extrusion construction system may include an extrusion nozzle configured to extrude construction material in a substantially horizontal direction against an elongated and substantially vertical surface. An extrusion nozzle may have a height adjustment mechanism configured to adjust the height of an outlet in response to level deviations in the surface on which the construction material is extruded by the extrusion nozzle. An automated extrusion construction system may include a slicing mechanism configured to controllably slice through the extruded layer.
Abstract:
A fluid metering device may meter the flow of fluid. The device may have a main chamber and a piston configured and oriented to reciprocate within the main chamber. The piston may be configured and oriented to define a first and a second sub-chamber whose volumes vary inversely as a function of the position of the piston during its reciprocation. The fluid metering device may have a first inlet valve configured to controllably regulate the flow of fluid into the first sub-chamber, a first outlet valve configured to controllably regulate the flow of fluid out of the first sub-chamber, a second inlet valve configured to controllably regulate the flow of fluid into the second sub-chamber, and a second outlet valve configured to controllably regulate the flow of fluid out of the second sub-chamber. A valve controller may be configured to control each of the values in a manner that causes fluid to flow through the each of the sub-chambers at an average rate that substantially tracks a control signal which is delivered to the valve controller.
Abstract:
A nozzle for extruding cementitious material may include an outlet sized and configured to extrude the cementitious material, a material flow pathway configured to channel the cementitious material to the outlet, and a vibration-actuated valve interposed in the material flow pathway. The valve may include a plurality of spaced-apart plates configured to form a plurality of flow channels, and a vibration-generating device coupled to the plates and configured to controllable cause the plates to controllably vibrate. The vibration-actuated valve may be configured such that the cementitious material must flow through the channels formed by the plates in order to reach the outlet, The spacing between the plates and the surface of the plates may be in amounts which collectively cause the flow of the cementitious material though the plurality of flow channels to be blocked when the vibration-generating device is not vibrating, and the cementitious material to flow through the plurality of flow channels simultaneously when the vibration-generating device is vibrating.
Abstract:
A cementitious material delivery system may include a pump configured to pump cementitious material and an accumulator. The accumulator may be a decoupling accumulator and may contain a reservoir configured to store cementitious material, an accumulator inlet to the reservoir configured to receive cementitious material pumped by the pump, an accumulator outlet configured to deliver cementitious material from the reservoir, and a pressure applicator configured to apply pressure to the cementitious material that is delivered from the accumulator outlet.
Abstract:
A mixer-extruder assembly may include a hollow cylindrical chamber and a hopper connected to the chamber. A piston drive shaft having a piston attached at one end may be rotatable about a drive shaft axis that is coaxial with the cylindrical chamber. The piston may have one or more mixer blades coupled thereto and rotatable therewith. The piston may be controllably rotated about the drive shaft axis, after input material received by the hopper is delivered into the chamber, causing the mixer blades to rotate and mix the input material with mixing fluid introduced into the chamber. The piston may also be slidably movable from an upper end of the chamber toward the outlet port of the chamber, so that the mixed input material is extruded through the output port of the chamber.
Abstract:
A process for making construction material may include mixing predetermined portions of two or more components of cementitious materials without ingredients that would allow the mixture to cure, and separating the un-curable mixture of the two or more components into a plurality of pellets, each having substantially the predetermined portions of the two or more components. An extrusion system may include a transport line configured to transport the dry pellets in a gaseous transport stream.
Abstract:
An extrusion construction system may include an extrusion nozzle configured to extrude construction material through an outlet onto an external surface, the extrusion nozzle including an excess flow port disposed substantially adjacent an edge of the outlet, an imaging device coupled to the extrusion nozzle, and a controller configured to adjust the rate of material flow through the extrusion nozzle in response to receiving one or more images captured by the imaging device showing excess material being extruded through the excess flow port.
Abstract:
A haptic apparatus may include a plate element positionable to extend over an anatomical segment of a user, and an elongate member coupled to the plate element and configured to be movably mounted onto the anatomical segment so as to remain substantially vertical and substantially perpendicular to the anatomical segment while the anatomical segment undergoes a motion. The haptic apparatus may further include a motion restrictor responsive to a control signal to impede the motion of the anatomical segment by generating an opposing force along the elongate member in a direction normal to the anatomical segment, thereby providing tactile feedback to the user.
Abstract:
A deployable crafting machine may include a vehicle and a gantry system. The gantry system may be configured to be collapsed on the vehicle during which the gantry system is inoperable and to be expanded during which the gantry system is operable and supported at least in part by the vehicle. A deployable crafting process may include moving a vehicle to a first location while a gantry system is stored on the vehicle in a collapsed and inoperable state and expanding the gantry system into an operable state after the vehicle arrives at the first location during which the gantry system is supported at least in part by the vehicle.
Abstract:
A system, apparatus and method are useful for lifting water in a gas-producing wellbore through the application of a differential between pressure of the gas in the wellbore's gas-production conduit and pressure of the wellbore annulus. The apparatus comprises a module disposed in the gas-producing wellbore for collecting by condensation water that has been lifted as water vapor with produced gas in a gas-production conduit disposed in the wellbore, and one or more lift modules for applying the pressure differential to lift the collected water within the wellbore.