摘要:
An apparatus and method operable to enable the use of synchronization (SCH) and broadcast channel (BCH) signals with a bandwidth (BW) equal to the minimum possible BW for the system, for example 1.25 MHz. The present invention increases the speed of the initial cell search. In addition, the repetition of signals in the frequency domain makes it possible to perform a faster cell detection in the event a system/mobile terminal/UE is using a larger BW. When the present invention is used in a high BW system, a mobile terminal/UE is operable to determine whether to perform a cell search on a low or high BW to get sufficient cell detection performance.
摘要:
An apparatus and method operable to enable the use of synchronization (SCH) and broadcast channel (BCH) signals with a bandwidth (BW) equal to the minimum possible BW for the system, for example 1.25 MHz. The present invention increases the speed of the initial cell search. In addition, the repetition of signals in the frequency domain makes it possible to perform a faster cell detection in the event a system/mobile terminal/UE is using a larger BW. When the present invention is used in a high BW system, a mobile terminal/UE is operable to determine whether to perform a cell search on a low or high BW to get sufficient cell detection performance.
摘要:
A communication device is described herein that has control (or at least partial control) over which virtual antenna(s) in one or more base stations to use for transmissions. In one embodiment, the mobile phone performs the following steps: (1) receives an antenna subset list (from the scheduling unit) which identifies a configuration of virtual antennas that is associated with the base station(s); (2) uses the antenna subset list to select which virtual antenna(s) in the configuration of virtual antennas to use for transmissions; and (3) sends an antenna selection signal (to the scheduling unit) which contains information that instructs/requests the base station(s)/scheduling unit to use the selected virtual antenna(s) for transmissions.
摘要:
The required bitrate for reporting channel state information from a network transceiver to the network is dramatically reduced, while maintaining fidelity of channel estimates, by exploiting prior channel estimates and the time correlation of channel response. For a selected set of sub-carriers, the transceiver estimates channel frequency response from pilot signals. The transceiver also predicts the frequency response for each selected sub-carrier, by multiplying a state vector comprising prior frequency response estimate and a coefficient vector comprising linear predictive coefficients. The predicted frequency response is subtracted from the estimated frequency response, and the prediction error is quantized and transmitted to the network. The network maintains a corresponding state vector and predictive coefficient vector, and also predicts a frequency response for each selected sub-carrier. The received prediction error is inverse quantized and subtracted from the predicted frequency response to yield a frequency response corresponding to that estimated at the transceiver.
摘要:
Techniques for reducing the number of bits needed to specify the best precoding vector for each mobile station in a wireless communication network that employs multi-point transmission are disclosed. An exemplary method begins with the estimation of path loss between a mobile station and each of a plurality of geographically separated transmitter sites, each transmitter site having at least one transmitter antenna. Based on the estimated path losses, one of a plurality of pre-determined subsets (codebooks) of a pre-determined set of antenna precoding vectors is selected. A group index identifying the selected subset is then transmitted to the mobile station. Subsequently, a vector index is received from the mobile station, the vector index corresponding to a precoding vector in the selected subset, and data is transmitted to the mobile station, using the precoding vector applied to the transmitter antennas at the plurality of transmitter sites.
摘要:
A mobile communication system network node (NN) that serves user equipments (UEs) has fewer orthogonal reference signals (RSs) than a maximum number of UE antenna ports (APs) that can be served by the NN. A channel quality of a channel between the AP and the network node is ascertained for each of the APs. Whenever a number of APs of UEs served by the NN exceeds the number of RSs, all RSs are allocated to a subset of all of the APs by means of an allocation process such that: each RS is allocated to only one of the APs; each AP has no more than one RS allocated to it; and allocation decisions are a function of the channel qualities of the respective APs such that the higher the channel quality, the higher priority the corresponding AP is given as a candidate for receiving an RS allocation.
摘要:
Techniques for reducing the number of bits needed to specify the best precoding vector for each mobile station in a wireless communication network that employs multi-point transmission are disclosed. An exemplary method begins with the estimation of path loss between a mobile station and each of a plurality of geographically separated transmitter sites, each transmitter site having at least one transmitter antenna. Based on the estimated path losses, one of a plurality of pre-determined subsets (codebooks) of a pre-determined set of antenna precoding vectors is selected. A group index identifying the selected subset is then transmitted to the mobile station. Subsequently, a vector index is received from the mobile station, the vector index corresponding to a precoding vector in the selected subset, and data is transmitted to the mobile station, using the precoding vector applied to the transmitter antennas at the plurality of transmitter sites.
摘要:
Teachings presented herein offer reduced computational complexity for symbol sequence estimation, and also provide for the generation of soft bit values representing the reliability of that estimation. A demodulator is configured to generate these soft bit values by identifying a candidate value for each symbol in the sequence which is more likely than at least one other in a defined set of candidate values. Based on the candidate value identified for each symbol, the demodulator forms a reduced set of candidate values for the symbol by selecting as many additional candidate values from the defined set as are needed to have complementary bit values for each bit value in that identified candidate value. The demodulator calculates soft bit values for the symbol sequence based on a sequence estimation process whose state space for each symbol is constrained to the corresponding reduced set.
摘要:
Radio transmission in an Orthogonal Frequency Division Multiplex, OFDM, based cellular wireless radio transmission system, wherein radio access equipment of the system connects to multiple geographically spread radio antennas of a Distributed Antenna System, DAS, for transmitting to and receiving radio signals from user equipment. Transmit timings for radio transmission between the user equipment and the antennas of the DAS are established. The radio transmission is scheduled based on the established transmit timings.
摘要:
Accurate downlink channel estimates are calculated based on infrequently transmitted Channel State Information (CSI) feedback data from a UE 20. A plurality of non-uniformly spaced digital CSI feedback samples, representing the frequency response of a downlink communication channel, is received from the UE. The received CSI feedback samples are demodulated and inverse quantized. A time domain tap delay channel model is generated from the inverse quantized CSI feedback samples. The time domain tap delay channel model may be frequency-transformed to obtain a reconstructed frequency response of the downlink communication channel in the frequency domain. Alternatively, channel delays may be estimated based on prior delays and/or known references signals transmitted on the uplink. Channel estimates between CSI reporting instances may be predicted, such as by a sample & hold or a linear predictor. The delays may be presumed fixed, and Kalman filter coefficients evolved over time.