摘要:
An electrode structure for a display device comprising a gate electrode proximate to an emitter and a focusing electrode separated from the gate electrode by an insulating layer containing a ridge. When the focusing electrode is an aperture-type electrode, the upper surface of the ridge protrudes closer to the emitter than the sidewall of the gate electrode or the sidewall of the focusing electrode. When the focusing electrode is a concentric-type electrode, the ridge protrudes above the upper surface of the gate electrode or the upper surface of the focusing electrode. A method for making the aperture-type and concentric-type electrode structures is described. A display device containing such electrode structures is also described. By forming an insulating ridge between the gate and focusing electrodes, shorting between the two electrodes is reduced and yield enhancement increased.
摘要:
An electrode structure for a display device comprising a gate electrode proximate to an emitter and a focusing electrode separated from the gate electrode by an insulating layer containing a ridge. When the focusing electrode is an aperture-type electrode, the ridge protrudes closer to the emitter than the sidewall of the gate electrode or the sidewall of the focusing electrode. When the focusing electrode is a concentric-type electrode, the ridge protrudes above the upper surface of the gate electrode or the upper surface of the focusing electrode. A method for making the aperture-type and concentric-type electrode structures is described. A display device containing such electrode structures is also described. By forming an insulating ridge between the gate and focusing electrodes, shorting between the two electrodes is reduced and yield enhancement increased.
摘要:
A method for making an electrode structure and an electrode structure for a display device comprising a gate electrode proximate to an emitter and a focusing electrode separated from the gate electrode by an insulating layer containing a ridge. When the focusing electrode is an aperture-type electrode, the upper surface of the ridge protrudes closer to the emitter than the sidewall of the gate electrode or the sidewall of the focusing electrode. When the focusing electrode is a concentric-type electrode, the ridge protrudes above the upper surface of the gate electrode or the upper surface of the focusing electrode.
摘要:
An electrode structure for a display device comprising a gate electrode proximate to an emitter and a focusing electrode separated from the gate electrode by an insulating layer containing a ridge. When the focusing electrode is an aperture-type electrode, the ridge protrudes closer to the emitter than the sidewall of the gate electrode or the sidewall of the focusing electrode. When the focusing electrode is a concentric-type electrode, the ridge protrudes above the upper surface of the gate electrode or the upper surface of the focusing electrode. A method for making the aperture-type and concentric-type electrode structures is described. A display device containing such electrode structures is also described. By forming an insulating ridge between the gate and focusing electrodes, shorting between the two electrodes is reduced and yield enhancement increased.
摘要:
An electrode structure for a display device comprising a gate electrode proximate to an emitter and a focusing electrode separated from the gate electrode by an insulating layer containing a ridge are provided. When the focusing electrode is an aperture-type electrode, the ridge protrudes closer to the emitter than the sidewall of the gate electrode or the sidewall of the focusing electrode. When the focusing electrode is a concentric-type electrode, the ridge protrudes above the upper surface of the gate electrode or the upper surface of the focusing electrode. A method for making the aperture-type and concentric-type electrode structures is described. A display device containing such electrode structures is also described. By forming an insulating ridge between the gate and focusing electrodes, shorting between the two electrodes is reduced and yield enhancement increased.
摘要:
An electrode structure for a display device comprising a gate electrode proximate to an emitter and a focusing electrode separated from the gate electrode by an insulating layer containing a ridge are provided. When the focusing electrode is an aperture-type electrode, the ridge protrudes closer to the emitter than the sidewall of the gate electrode or the sidewall of the focusing electrode. When the focusing electrode is a concentric-type electrode, the ridge protrudes above the upper surface of the gate electrode or the upper surface of the focusing electrode. A method for making the aperture-type and concentric-type electrode structures is described. A display device containing such electrode structures is also described. By forming an insulating ridge between the gate and focusing electrodes, shorting between the two electrodes is reduced and yield enhancement increased.
摘要:
An electrode structure for a display device comprising a gate electrode proximate to an emitter and a focusing electrode separated from the gate electrode by an insulating layer containing a ridge are provided. When the focusing electrode is an aperture-type electrode, the ridge protrudes closer to the emitter than the sidewall of the gate electrode or the sidewall of the focusing electrode. When the focusing electrode is a concentric-type electrode, the ridge protrudes above the upper surface of the gate electrode or the upper surface of the focusing electrode. A method for making the aperture-type and concentric-type electrode structures is described. A display device containing such electrode structures is also described. By forming an insulating ridge between the gate and focusing electrodes, shorting between the two electrodes is reduced and yield enhancement increased.
摘要:
An electrode structure for a display device comprising a gate electrode proximate to an emitter and a focusing electrode separated from the gate electrode by an insulating layer containing a ridge. When the focusing electrode is an aperture-type electrode, the ridge protrudes closer to the emitter than the sidewall of the gate electrode or the sidewall of the focusing electrode. When the focusing electrode is a concentric-type electrode, the ridge protrudes above the upper surface of the gate electrode or the upper surface of the focusing electrode. A method for making the aperture-type and concentric-type electrode structures is described. A display device containing such electrode structures is also described. By forming an insulating ridge between the gate and focusing electrodes, shorting between the two electrodes is reduced and yield enhancement increased.
摘要:
A method and apparatus for programmable field emission display comprising an array of cathodoluminescent elements. Each cathodoluminescent element in the array is responsive to separate select signals to cause light to be emitted from said display at a location in the array corresponding to each separate cathodoluminescent element. In one embodiment, to account for processing variation and the like, each cathodoluminescent element is provided with a programmable element for adjusting the operating level of the associated cathodoluminescent element in response to select signals of predetermined voltage levels. Each programmable element includes a charge storage device and is initially programmed by storing a level of electric charge thereon such that uniformity of operation among the plurality of cathodoluminescent elements in the array is improved. In one embodiment the programmable element comprises a floating gate transistor. In another embodiment, each cathodoluminescent element is provided with an infrared-sensitive element for modulating the operating level of the corresponding cathodoluminescent element in relation to the intensity of infrared radiation to which the infrared-sensitive element is exposed, thereby enabling the field emission display to operate as an infrared radiation sensing and display device.
摘要:
Some embodiments include semiconductor processing methods in which a copper barrier is formed to be laterally offset from a copper component, and in which nickel is formed to extend across both the barrier and the component. The barrier may extend around an entire lateral periphery of the component, and may be spaced from the component by an intervening ring of electrically insulative material. The copper component may be a bond pad or an interconnect between two levels of metal layers. Some embodiments include semiconductor constructions in which nickel extends across a copper component, a copper barrier is laterally offset from the copper component, and an insulative material is between the copper barrier and the copper component.