Abstract:
A dual loop regulator is configured for improved regulation of a supply voltage for a dynamic load based on the magnitude of changes in the load voltage. An exemplary dual loop regulator comprises a primary voltage regulator configured within a linear loop and a secondary voltage regulator configured within a wideband, non-linear loop. The primary voltage regulator is configured for providing a well-controlled, regulated output voltage to the dynamic load, and for addressing small changes in the output voltage. The secondary voltage regulator is configured for sensing undervoltage and overvoltage conditions at the dynamic load, and for addressing changes greater than a predetermined threshold voltage. To facilitate loop stability, secondary voltage regulator can be configured within the wideband, non-linear loop to have a small gain for small changes, a larger gain for large changes, and/or a substantially finite storage capability such that any large signal oscillations will not be sustained.
Abstract:
A device for providing power to suppress transient load demands and a system including the device are disclosed. The device includes a sense circuit to detect when a transient event occurs and one or more transistors configured to supply or sink current to the load. The system may include a second power regulator configured to respond to fast transient power demands. In this case, a first power regulator supplies power to the load and responds to slow transient events, while the second regulator responds only to fast transient events.
Abstract:
A device for providing power to suppress transient load demands and a system including the device are disclosed. The device includes a sense circuit to detect when a transient event occurs and one or more transistors configured to supply or sink current to the load. The system may include a second power regulator configured to respond to fast transient power demands. In this case, a first power regulator supplies power to the load and responds to slow transient events, while the second regulator responds only to fast transient events.
Abstract:
A device for providing power to suppress transient load demands and a system including the device are disclosed. The device includes a sense circuit to detect when a transient event occurs and one or more transistors configured to supply or sink current to the load. The system may include a second power regulator configured to respond to fast transient power demands. In this case, a first power regulator supplies power to the load and responds to slow transient events, while the second regulator responds only to fast transient events.
Abstract:
Methods and apparatus for power regulation according to various aspects of the present invention may operate in conjunction with producing a voltage ramp starting at a first voltage and ending at a second voltage and compensating the voltage ramp according to a compensation parameter. The compensation parameter may be adapted to compensate for a circuit parameter. A voltage may then be generated according to the compensated voltage ramp.
Abstract:
Methods and apparatus for power regulation according to various aspects of the present invention may operate in conjunction with producing a voltage ramp starting at a first voltage and ending at a second voltage and compensating the voltage ramp according to a compensation parameter. The compensation parameter may be adapted to compensate for a circuit parameter. A voltage may then be generated according to the compensated voltage ramp.
Abstract:
A system is provided for supplying current to a dynamic load subject to transient current requirements. A sense unit coupled to the dynamic load is configured to sense the rate of change of supply current required by the dynamic load during a transient event. A current source coupled to the sense unit is configured to supply a current pulse to the dynamic load in response to the sense unit determining that the rate of change of supply current (di/dt) exceeds a predetermined threshold. The current pulse preferably has a shape characterized by a first region and a second region subsequent to the second region, wherein the first region includes a first boost current which exceeds the transient current requirement, and wherein the second region includes a second boost current which is less than the transient current requirement. More generally, a wideband transient suppression system is provided for controlling a wide spectrum of transients. The wideband system includes a primary regulator configured to compensate for low frequency transients, and a secondary regulator configured to provide short-term compensation current to the dynamic load until the relatively slow primary regulator can accommodate the transient event. The secondary regulator includes two major functional blocks: a close-loop voltage-sensing compensation circuit configured to compensate for transients falling within a mid-range frequency range, and an open-loop di/dt-sensing compensation circuit configured to compensate for transients falling within a high-frequency range.
Abstract:
A method, apparatus, and system for routing signals in a microelectronic device are disclosed. The system includes a plurality of chip components, such as transient suppression regulators, that are configured to include a transmission path that is routed through the chip component for transmission of any signal, for example, a signal from a communication bus of the microelectronic device.
Abstract:
Methods and apparatus for regulating power supply according to various aspects of the present invention operate in conjunction with an electronic system configured to interface with a primary voltage regulator. The electronic system comprises a load configured to receive supply current from the primary voltage regulator and a secondary voltage regulator. The secondary voltage regulator includes at least one current source coupled to the load and is configured to provide current to the load. The secondary voltage regulator further comprises a control circuit coupled to the current source and the load, which determines a current demand for the load exceeding the supply current received from the primary voltage regulator, and adjusts the current provided to the load by the current source according to the current demand.
Abstract:
A transient current generator for testing microelectronic power regulator systems is provided. The current generator includes a current source and one or more transistors to provide current or sink current to a microelectronic power delivery system. The generator may be used to test a microprocessor power delivery system by replacing the microprocessor with one or more of the generators of the present invention.