摘要:
A hydrocracking process is provided which process utilizes a sulfated solid catalyst comprising (1) oxide or hydroxide of Group III or Group IV element, e.g. zirconium, and (2) a first metal comprising a metal or combination of metals selected from the group consisting of platinum, palladium, nickel, platinum and rhenium, and platinum and tin. The catalyst may further comprise (3) a second metal selected from the group consisting of Group VIII elements, e.g. iron. One embodiment of the invention further comprises (4) a third metal selected from the group consisting of Group V, VI and VII elements, e.g. manganese.
摘要:
A sulfated solid catalyst is provided which comprises (1) oxide or hydroxide of Group III or Group IV element, e.g. zirconium, and (2) a first metal comprising a metal or combination of metals selected from the group consisting of platinum, palladium, nickel, platinum and rhenium, and platinum and tin. The catalyst may further comprise (3) a second metal selected from the group consisting of Group VIII elements, e.g. iron. One embodiment of the invention further comprises (4) a third metal selected from the group consisting of Group V, VI and VII elements, e.g. manganese. The catalyst of the invention is useful for the isomerization of normal alkanes having 4 to 40 carbon atoms per molecule, for the naphtha upgrading of a hydrocarbon feedstock and for the hydrocracking of a hydrocarbon feedstock.
摘要:
An isomerization process is provided which process utilizes a sulfated solid catalyst comprising (1) oxide or hydroxide of Group III or Group IV element, e.g. zirconium, and (2) a first metal comprising a metal or combination of metals selected from the group consisting of platinum, palladium, nickel, platinum and rhenium, and platinum and tin. The sulfated support is calcined prior to incorporation of the first metal and subsequent to said incorporation. The catalyst may further comprise (3) a second metal selected from the group consisting of Group VIII elements, e.g. iron. One embodiment of the invention further comprises (4) a third metal selected from the group consisting of Group V, VI and VII elements, e.g. manganese. Said second and third metals are added prior to the first calcination.
摘要:
A naphtha upgrading process is provided which process utilizes a sulfated solid catalyst comprising (1) oxide or hydroxide of Group III or Group IV element, e.g. zirconium, and (2) a first metal comprising a metal or combination of metals selected from the group consisting of platinum, palladium, nickel, platinum and rhenium, and platinum and tin. The sulfated support is calcined prior to incorporation of the first metal and subsequent to said incorporation. The catalyst may further comprise (3) a second metal selected from the group consisting of Group VIII elements, e.g. iron. One embodiment of the invention further comprises (4) a third metal selected from the group consisting of Group V, VI and VII elements, e.g. manganese. Said second and third metals are added prior to the first calcination.
摘要:
Oxidative dehydrogenation of alkanes and alkylaromatic hydrocarbons is achieved by contact with an active carbon catalyst. In various aspects of the invention, the oxidative dehydrogenation is performed at a pressure above about 100 psia, and/or at a temperature in the range from about 500.degree. C. to about 800.degree. C., and/or the active carbon catalyst contains a metal, for example, molybdenum.
摘要:
Solid superacid catalyst, for example sulfated zirconia, is used in the oxidative dehydrogenation of saturated or partially saturated hydrocarbons, for example the conversion of isobutane to isobutylene in the presence of an oxygen-containing oxidizing agent at reaction conditions typically including temperatures from 500 to 1,000 degrees Fahrenheit, superatmospheric pressures, and oxygen/alkane molar ratios from 0.2 to 20. Performance of a metal-oxide or metal-hydroxide oxidative dehydrogenation catalyst may be enhanced by pretreating a solid superacid or other catalyst containing metal oxides or hydroxides at a carbonizing temperature with an organic material, for example an oxygen-containing organic material, to form a carbonaceous layer on the surface thereof prior to use of the catalyst in oxidative dehydrogenation.
摘要:
Systems and methods for determining the flow distribution of a fluid through a component with a sensing cable including an optical fiber sensor array aligned with a heating element disposed in the component. An excitation source is configured to propagate at least one heat pulse through the heating element along at least a portion of the sensing cable to affect an exchange of thermal energy between the heating element and the fluid exposed to the sensing cable. An optical signal is adapted to receive a signal from each of a plurality of sensor locations and measure a temperature profile corresponding to the heat pulse at the sensor locations. A control unit is configured to determine a flow of the fluid by determining one or more properties of the fluid exposed to the sensing cable at each of the plurality of sensor locations based on the temperature profile corresponding thereto. The present invention can be effective in accurate and high spatial resolution of flow distributions through vessel components, such as a particulate bed (such as a reactor catalyst bed), a wash bed including packing material, an absorbent bed, a structured bed, a filter, or the like.
摘要:
A divided wall column can allow for fractionation of multiple streams while maintaining separate product qualities. Effluents from multiple stages of a reaction system can be processed in a single divided wall column. The divided wall column can produce multiple cuts from each separated area, as well as at least one output from a common area. At least one reaction stage can advantageously have a continuous liquid phase environment.
摘要:
A process for the alkylation of a benzene-containing refinery stream such as reformate with light refinery olefins which is capable of achieving high benzene conversion levels operates in a fixed bed of an MWW zeolite catalyst, preferably MCM-22, in single pass mode in the liquid phase at a relatively low to moderate temperatures with pressure maintained at a value adequate to ensure subcritical operation. High levels of benzene conversion with conversions of at least 90% and higher, e.g. 92% or 95% or even higher are achievable. A high octane product is produced, comprising mono-, di- and tri-alkylbenzenes with lesser levels of the tetra-substituted products. By operating with staged olefin injection, the end point of the alkylation product can be maintained at a low value while, at the same time, achieving high levels of benzene and olefin conversion.
摘要:
A structure and method are provided for adding a catalyst bed platform to an existing reactor without welding to the structural portion of the reactor walls. The structure is constructed from components that can be passed through an existing opening in a reactor. The structure allows a catalyst bed in an existing reactor to be divided into catalyst beds with a reduced length to diameter ratio.