摘要:
A method of forming nanowire devices. The method includes forming a stressor layer circumferentially surrounding a semiconductor nanowire. The method is performed such that, due to the stressor layer, the nanowire is subjected to at least one of radial and longitudinal strain to enhance carrier mobility in the nanowire. Radial and longitudinal strain components can be used separately or together and can each be made tensile or compressive, allowing formulation of desired strain characteristics for enhanced conductivity in the nanowire of a given device.
摘要:
A method of forming nanowire devices. The method includes forming a stressor layer circumferentially surrounding a semiconductor nanowire. The method is performed such that, due to the stressor layer, the nanowire is subjected to at least one of radial and longitudinal strain to enhance carrier mobility in the nanowire. Radial and longitudinal strain components can be used separately or together and can each be made tensile or compressive, allowing formulation of desired strain characteristics for enhanced conductivity in the nanowire of a given device.
摘要:
Systems and methods for storing and reading data in a data storage system are provided. The data storage system includes a storage medium for storing data. The storage medium stores data as a plurality of topographical features. Further, the data storage system includes one or more transducer. One or more transducer writes data on the storage medium. Additionally, the data storage medium includes one or more gates. A first voltage bias is applied to one or more gates. The data storage system further includes, one or more read heads. One or more read heads include one or more Floating Gate Transistors (FGTs). The first voltage bias creates an electric field between one or more FGTs and one or more gates. A change in the electric field is detected by one or more FGTs.
摘要:
A method reading, writing, and erasing data includes bringing a thermal-mechanical probe into proximity with a layer of cross-linked polymeric material to induce a deformed region at a point in the film, thereby writing information; bringing a thermal-mechanical probe into proximity with the deformed region, thereby reading information; and bringing a thermal-mechanical probe into proximity with the deformed region, further deforming it in such a way to eliminate the deformed region, thereby erasing the information; and repeating the storing, reading, and erasing steps at points in the film.