摘要:
A semiconductor device and a related fabrication process are presented here. The device includes a support substrate, a buried oxide layer overlying the support substrate, a first semiconductor region located above the buried oxide layer and having a first conductivity type. The device also includes second, third, fourth, and fifth semiconductor regions. The second semiconductor region is located above the first semiconductor region, and it has a second conductivity type. The third semiconductor region is located above the second semiconductor region, and it has the first conductivity type. The fourth semiconductor region is located above the third semiconductor region, and it has the second conductivity type. The fifth semiconductor region extends through the fourth semiconductor region and the third semiconductor region to the second semiconductor region, and it has the second conductivity type.
摘要:
Transistors (21, 41) employing floating buried layers (BL) (72) may exhibit transient breakdown voltage (BVdss)TR significantly less than (BVdss)DC. It is found that this occurs because the floating BL (72) fails to rapidly follow the applied transient, causing the local electric field within the device to temporarily exceed avalanche conditions. (BVdss)TR of such transistors (69. 69′) can be improved to equal or exceed (BVdss)DC by including a charge pump capacitance (94, 94′) coupling the floating BL (72) to whichever high-side terminal (28, 47) receives the transient. The charge pump capacitance (94, 94′) may be external to the transistor (69, 69′), may be formed on the device surface (71) or, may be formed internally to the transistor (69-3, 69′-3) using a dielectric deep trench isolation wall (100) separating DC isolated sinker regions (86, 88) extending to the BL (72). The improvement is particularly useful for LDMOS devices.
摘要:
A semiconductor device and a related fabrication process are presented here. The device includes a support substrate, a buried oxide layer overlying the support substrate, a first semiconductor region located above the buried oxide layer and having a first conductivity type. The device also includes second, third, fourth, and fifth semiconductor regions. The second semiconductor region is located above the first semiconductor region, and it has a second conductivity type. The third semiconductor region is located above the second semiconductor region, and it has the first conductivity type. The fourth semiconductor region is located above the third semiconductor region, and it has the second conductivity type. The fifth semiconductor region extends through the fourth semiconductor region and the third semiconductor region to the second semiconductor region, and it has the second conductivity type.
摘要:
An LDMOS transistor includes a substrate of semiconductor material, an insulator layer overlying the substrate, a semiconductor layer overlying the insulator layer, a RESURF region, and a gate. The semiconductor layer includes a first conductivity type well region, a second conductivity type source region in contact with the first conductivity type well region, a second conductivity type drain region. The RESURF region includes at least one first conductivity type material portion, and at least one portion of the at least one first conductivity type material portion electrically coupled to the first conductivity type well region. A semiconductor material having a second conductivity type is located below the RESURF region. The second conductivity type semiconductor material is also located over a part of the RESURF region. The gate is located over the first conductivity type well region and over the RESURF region.
摘要:
Transistors (21, 41) employing floating buried layers (BL) (72) may exhibit transient breakdown voltage (BVdss)TR significantly less than (BVdss)DC. It is found that this occurs because the floating BL (72) fails to rapidly follow the applied transient, causing the local electric field within the device to temporarily exceed avalanche conditions. (BVdss)TR of such transistors (69. 69′) can be improved to equal or exceed (BVdss)DC by including a charge pump capacitance (94, 94′) coupling the floating BL (72) to whichever high-side terminal (28, 47) receives the transient. The charge pump capacitance (94, 94′) may be external to the transistor (69, 69′), may be formed on the device surface (71) or, may be formed internally to the transistor (69-3, 69′-3) using a dielectric deep trench isolation wall (100) separating DC isolated sinker regions (86, 88) extending to the BL (72). The improvement is particularly useful for LDMOS devices.
摘要:
An LDMOS transistor includes a substrate of semiconductor material, an insulator layer overlying the substrate, a semiconductor layer overlying the insulator layer, a RESURF region, and a gate. The semiconductor layer includes a first conductivity type well region, a second conductivity type source region in contact with the first conductivity type well region, a second conductivity type drain region. The RESURF region includes at least one first conductivity type material portion, and at least one portion of the at least one first conductivity type material portion electrically coupled to the first conductivity type well region. A semiconductor material having a second conductivity type is located below the RESURF region. The second conductivity type semiconductor material is also located over a part of the RESURF region. The gate is located over the first conductivity type well region and over the RESURF region.
摘要:
Methods and apparatus are provided for fabricating a semiconductor device structure. The semiconductor device structure comprises a buried region having a first conductivity type, a first region having a second conductivity type overlying the buried region, a source region having the first conductivity type overlying the first region, and a drain region having the first conductivity type overlying the first region. The semiconductor device structure further comprises a second region having the first conductivity type overlying the buried region, the second region abutting the buried region to form an electrical contact with the buried region, and a first resistance configured electrically in series with the second region and the buried region. The combined series resistance of the first resistance and the second region is greater than a resistance of the buried region.
摘要:
Methods and apparatus are provided for fabricating a semiconductor device structure. The semiconductor device structure comprises a buried region having a first conductivity type, a first region having a second conductivity type overlying the buried region, a source region having the first conductivity type overlying the first region, and a drain region having the first conductivity type overlying the first region. The semiconductor device structure further comprises a second region having the first conductivity type overlying the buried region, the second region abutting the buried region to form an electrical contact with the buried region, and a first resistance configured electrically in series with the second region and the buried region. The combined series resistance of the first resistance and the second region is greater than a resistance of the buried region.
摘要:
A laterally double diffused metal oxide semiconductor device includes a well region having a first conductivity, a first carrier redistribution region having the first conductivity type, wherein the second well region is under the well region, and a highly doped buried layer under the second well region. The highly doped buried layer has the first conductivity type and has a dopant concentration less than that of the well region and less than that of the first carrier redistribution region, and the buried layer is tied to the first well region. In addition, a method for forming the laterally double diffused metal oxide semiconductor device, which may use epitaxial growth, is disclosed.
摘要:
Method (200) and apparatus (30, 50-53) are described for MOS capacitors (MOS CAPs). The apparatus (30, 50-53) comprises a substrate (31) having Ohmically coupled N and P semiconductor regions (32, 34; 54, 56; 92, 94) covered by a dielectric (35, 57, 95). A conductive electrode (36, 58, 96) overlies the dielectric (35, 57, 95) above these N and P regions (32, 34; 54, 56; 92, 94). Use of the Ohmically coupled N and P regions (32, 34; 54, 56; 92, 94) substantially reduces the variation (40, 64, 70, 80) of capacitance with applied voltage associated with ordinary MOS CAPs. When these N and P regions (32, 34; 54, 56; 92, 94) have unequal doping, the capacitance variation (40, 64, 70, 80) may still be substantially compensated by adjusting the properties of the dielectric (57, 95) above the N and P regions (54, 56; 92, 94) and/or relative areas of the N and P regions (54, 56; 92, 94) or both. Accordingly, such MOS CAPS may be more easily integrated with other semiconductor devices with minimal or no disturbance to the established integrated circuit (IC) manufacturing process and without significantly increasing the occupied area beyond that required for a conventional MOS CAP.