摘要:
A process comprising: providing a substrate with a catalyst layer thereon; depositing a first ionomer overcoat layer over the catalyst layer, the first ionomer overcoat layer comprising an ionomer and a first solvent; drying the first ionomer overcoat layer to provide a first electrode ionomer overcoat layer; depositing a second ionomer overcoat layer over the first electrode ionomer overcoat layer, and wherein the second ionomer overcoat layer comprises an ionomer and a second solvent.
摘要:
A process comprising: depositing a liquid bonding layer comprising an ionomer and a solvent over a carrier film; placing a decal substrate over the liquid bonding layer and drying the liquid bonding layer to provide a solid bonding layer comprising the ionomer, and the solid bonding layer bonding the decal substrate and carrier film together.
摘要:
A method of manufacturing a fuel cell membrane electrode assembly comprising forming and compressing a stack having a plurality of layers in a desired orientation. The layers comprise a membrane, a cathode, an anode, and at least one edge protection layer. The method includes providing at least one mechanical reinforcing layer adjacent the anode or cathode layer, and allowing the electrodes to relax under high heat to remove stress prior to lamination.
摘要:
A fuel cell including an anode-side catalyst coated membrane and a cathode-side catalyst coated membrane. At least a portion of a reduced-permeability layer is disposed between the ionically conductive membrane and the anode-side and cathode-side gas diffusion media, wherein the reduced-permeability layer is formed of a material that has a permeability that is less than a permeability of the ionically conductive member. The reduced-permeability layer may also be formed of a material that is softer than-the ionically conductive membrane.
摘要:
A membrane electrode assembly comprises an ion-conducting membrane; a first electrocatalyst layer having a surface facing the membrane; a first electronically-conducting porous gas diffusion substrate facing the other surface of the first electrocatalyst layer; and a first film member interposed between the membrane and the first electrocatalyst layer. The first electrocatalyst layer has an edge region and a central region, and the first film member contacts the edge region and not the central region. A first adhesive layer is present on the surface of the first film member facing the first electrocatalyst layer, and the first adhesive layer adheres the first film member to the first electrocatalyst layer, impregnates through the first electrocatalyst layer, and impregnates into the first gas diffusion substrate.
摘要:
A gradient of ionomeric material is generated, disposed, or otherwise provided in an electrode suitable for use in a fuel cell. The ionomer concentration, e.g., with respect to the carbon content of the catalyst layer (e.g., expressed as a ratio), is greatest in the area closest to the membrane, e.g., of the fuel cell (e.g., the membrane side), and is decreased in the area furthest from the membrane (e.g., the gas side). By way of another non-limiting example, the ionomer gradient can be formed such that the concentration (or the ratio if expressed in relation to the carbon content of the catalyst layer) can gradually, as opposed to rapidly, decrease as the distance away from the membrane increases.
摘要:
A membrane electrode assembly wherein a film member (4) is interposed between the membrane (1) and an electrocatalyst layer (3) is disposed. The film member (4) contacts the edge region and not the central region of a first surface of the electrocatalyst layer (3).
摘要:
A fuel cell including an anode-side catalyst coated diffusion medium and a cathode-side catalyst coated diffusion medium that sandwich an ionically conductive membrane. A sealing material is disposed between the ionically conductive membrane and the anode-side and cathode-side catalyst coated diffusion medium, wherein the sealing material is formed of a material that has a permeability that is less than a permeability of the ionically conductive member. The sealing material may also be formed of a material that is softer than the ionically conductive membrane such that the sealing material may deform and enable an membrane electrode assembly of the fuel cell to be subjected to uniform pressures throughout the assembly.
摘要:
A method of making a membrane electrode assembly is provided. The method includes using a porous support to control the drying of the electrode, and the use of wettable and non-wettable solvents to control the seepage of ionomer into the porous support.
摘要:
A membrane electrode assembly comprising an ionically conductive member and an electrode, wherein the electrode is a smooth, continuous layer that completely covers and supports the ionically conductive member. The electrode further comprises a central region and a peripheral region, wherein a gradient of electrochemically active material exists between the central region and the peripheral region such that a content of the electrochemically active material is greater in the central region than the peripheral region.