摘要:
A semiconductor memory device including an array of memory cells. The memory device includes a first output driver coupled to a first output terminal, and a second output driver coupled to a second output terminal. The memory device further includes a voltage divider coupled between the first and second output terminals, to generate a control voltage based on a voltage level present on the first output terminal and a voltage level present on the second output terminal. The memory device further includes a comparator, coupled to the voltage divider, to compare the control voltage with a reference voltage, wherein an amount of voltage swing of the first output driver is adjusted based on the comparison between the control voltage and the reference voltage.
摘要:
An output driver circuit and current control technique to facilitate high-speed buses with low noise is used to interface with high-speed dynamic RAMs (DRAMs). The architecture includes the following components: an input isolation block (120), an analog voltage divider (104), an input comparator (125), a sampling latch (130), a current control counter (115), and a bitwise output driver (output driver A 107 and output driver B 111).
摘要:
An output driver circuit and current control technique to facilitate high-speed buses with low noise is used to interface with high-speed dynamic RAMs (DRAMs). The architecture includes the following components: an input isolation block (120), an analog voltage divider (104), an input comparator (125), a sampling latch (130), a current control counter (115), and a bitwise output driver (output driver A 107 and output driver B 111).
摘要:
A memory system and method of adjusting an output driver characteristic of a memory device that is included in the memory system. The method includes providing a command to the memory device that specifies a calibration mode and, during the calibration mode, driving a voltage level onto the first signal line using a first output driver. A first voltage level is derived from an amount of voltage swing generated by the first output driver driving the voltage level onto the first signal line. The method also includes: actively coupling a first comparator to the first signal line; when the first comparator is coupled to the first signal line, comparing the first voltage level with a reference voltage using the first comparator; and adjusting the amount of voltage swing to arrive at a calibrated voltage swing level. In addition, the method includes actively isolation the first comparator from the first signal line upon exiting the calibration mode. The memory device is operable in a normal read operation upon exiting the calibration mode. During the normal read operation, the first output driver is operable to output data onto the first signal line in accordance with the calibrated voltage swing level.
摘要:
A semiconductor controller device to control the operation of a semiconductor memory device. The controller device includes a first output driver coupled to a first output terminal, and a second output driver coupled to a second output terminal. In addition, the controller device includes a voltage divider, coupled between the first and second output terminals, to generate a control voltage based on a voltage level present on the first output terminal and a voltage level present on the second output terminal. In addition, the controller device also includes a comparator, coupled to the voltage divider, to compare the control voltage with a reference voltage, wherein an amount of voltage swing of the first output driver is adjusted based on the comparison between the control voltage and the reference voltage.
摘要:
An output driver circuit and current control technique to facilitate high-speed buses with low noise is used to interface with high-speed dynamic RAMs (DRAMs). The architecture includes the following components: an input isolation block (120), an analog voltage divider (104), an input comparator (125), a sampling latch (130), a current control counter (115), and a bitwise output driver (output driver A 107 and output driver B 111).
摘要:
Additional operating modes are provided to enhance the functionality and performance of a memory system. In one embodiment, a unique bit mask is supplied with the write data used in each column access. In an alternate embodiment, a bit mask register and byte mask register are provided to support bit level and byte level masking. The bit mask and write data registers are realized as a single register to provide the functionality while minimizing component space and cost. In another embodiment, a separate bit mask and byte mask are provided. The byte mask is loaded with mask data in one cycle and is used during the next "q" column write accesses. This structure provides for operating modes with no bit masking, with bit masks supplied for every row access, and with bit masks supplied with every column access. In order to enhance the functionality of a system, such as a two-dimensional graphics system, in an alternate embodiment, the memory system is provided with two registers and a select control line to select data from one of two registers. In a computer graphics system, this is used to select between foreground and background colors. The embodiment can be utilized in conjunction with the other embodiments described to provide enhanced functionality and performance.
摘要:
Additional modes are provided to enhance the functionality and performance of a memory system. In one embodiment, a unique bit mask is supplied with the write data used in each column access. In an alternate embodiment, a bit mask register and byte mask register are provided to support bit level and byte level masking. The bit mask and write data registers are realized as a single register to provide the functionality while minimizing component space and cost. In another embodiment, a separate bit mask and byte mask are provided. The byte mask is loaded with mask data in one cycle and is used during the next "q" column write accesses. This structure provides for operating modes with no bit masking, with bit masks supplied for every row access, and with bit masks supplied with every column access. In order to enhance the functionality of a system, such as a two-dimensional graphics system, in an alternate embodiment, the memory system is provided with two registers and a select control line to select data from one of two registers. In a computer graphics system, this is used to select between foreground and background colors. The embodiment can be utilized in conjunction with the other embodiments described to provide enhanced functionality and performance.
摘要:
Additional operating modes are provided to enhance the functionality and performance of a memory system. In one embodiment, a unique bit mask is supplied with the write data used in each column access. In an alternate embodiment, a bit mask register and byte mask register are provided to support bit level and byte level masking. The bit mask and write data registers are realized as a single register to provide the functionality while minimizing component space and cost. In another embodiment, a separate bit mask and byte mask are provided. The byte mask is loaded with mask data in one cycle and is used during the next "q" column write accesses. This structure provides for operating modes with no bit masking, with bit masks supplied for every row access, and with bit masks supplied with every column access. In order to enhance the functionality of a system, such as a two-dimensional graphics system, in an alternate embodiment, the memory system is provided with two registers and a select control line to select data from one of two registers. In a computer graphics system, this is used to select between foreground and background colors. The embodiment can be utilized in conjunction with the other embodiments described to provide enhanced functionality and performance.
摘要:
Additional operating modes are provided to enhance the functionality and performance of a memory system. In one embodiment, a unique bit mask is supplied with the write data used in each column access. In an alternate embodiment, a bit mask register and byte mask register are provided to support bit level and byte level masking. The bit mask and write data registers are realized as a single register to provide the functionality while minimizing component space and cost. In another embodiment, a separate bit mask and byte mask are provided. The byte mask is loaded with mask data in one cycle and is used during the next "q" column write accesses. This structure provides for operating modes with no bit masking, with bit masks supplied for every row access, and with bit masks supplied with every column access. In order to enhance the functionality of a system, such as a two-dimensional graphics system, in an alternate embodiment, the memory system is provided with two registers and a select control line to select data from one of two registers. In a computer graphics system, this is used to select between foreground and background colors. The embodiment can be utilized in conjunction with the other embodiments described to provide enhanced functionality and performance.