Abstract:
In a Wavelength Division Multiplexed Passive Optical Network (WDM-PON) including, a system for overlaying an analog broadcast signal. An Optical Line Terminal of the WDM-PON includes a broadband light source for generating uplink seed light for each uplink channel of the WDM-PON, and a modulator for modulating the analog broadcast signal onto the uplink seed light. An Optical Network Terminal of the WDM-PON receives the uplink seed light from the Optical Line Terminal, and includes an optical divider for dividing the received seed light into a first signal and a second signal; a light source for generating an uplink data signals using the first signal as seed light; and an RF receiver for detecting the analog broadcast signal modulated on the second signal.
Abstract:
A method of estimating an injection power of seed light injected into an injection-seeded transmitter. A back face monitoring (BFM) response of the injection-seeded transmitter is determined, and data representative of the BFM response stored in a memory. During run-time, a controller of the injection-seeded transmitter, detects a temperature of the injection-seeded transmitter and an instantaneous BFM current. BFM response data is obtained from the memory based on the detected temperature, and the seed light injection power estimated based on the obtained data and the detected instantaneous BFM current.
Abstract:
A method of estimating an injection power of seed light injected into an injection-seeded transmitter. A back face monitoring (BFM) response of the injection-seeded transmitter is determined, and data representative of the BFM response stored in a memory. During run-time, a controller of the injection-seeded transmitter, detects a temperature of the injection-seeded transmitter and an instantaneous BFM current. BFM response data is obtained from the memory based on the detected temperature, and the seed light injection power estimated based on the obtained data and the detected instantaneous BFM current.
Abstract:
A Wavelength Division Multiplexed Passive Optical Network (WDM-PON) includes a plurality of broadband light sources, each broadband light source being connected to receive a respective data signal and generating a corresponding modulated broadband optical signal. An Array Waveguide Grating (AWG) is connected for receiving each modulated broadband optical signal through a respective branch port and for generating a filtered broadband signal. The AWG implements a filter function comprising a respective pass-band associated with each branch port such that the filtered broadband signal exhibits a respective intensity peak associated with each pass-band. Each intensity peak is modulated with data from a respective one of the broadband light sources. A bandwidth of the respective modulated broadband optical signal generated by each broadband light source is at least equal to the width of a channel-band of the AWG.
Abstract:
A touch switch outlet mechanism has a fixation unit and a switch unit. The fixation unit includes an inlet waterway connected to the water source, a water diversion cavity connected to the inlet waterway, N number of water diversion holes connected to the water diversion cavity and several outlet functions with same number as the water diversion holes and one to one corresponding to the water diversion holes, N is equal to or more than 2; The switch unit includes N−1 number of sealing balls and N touch buttons, the N touch buttons are separately disposed with a touch end inside the water diversion cavity and a controlled end controlled by the user, the touch ends of the N touch buttons corresponding to N water diversion holes and sliding connected to the fixation unit, the N−1 sealing balls can close N−1 of the N water diversion holes.
Abstract:
A device using the live welding method for aluminum electrolytic cell overhauling under series full current consists of short-circuit buses at the bottom of the cell (1), pillar buses (2), an anode bus (3), a balance bus (4), a inter-cell standby bus (5), a door-shaped pillar clamp (6), an arcuate clamp (7) of anode buses, a current conversion switch (8, a mechanical switching device (9) for the short-circuit port, a voltage sensor and wires thereof (10), a temperature sensor and wires thereof (11), a system (12) for data acquiring, displaying, analyzing and alarming, an A-side welding area (13), a B-side welding area (14) and compression-joint points (15) on pillar soft belts of overhauling cells; and the live welding method comprises the following steps: when welding is required to be performed in some zone, the currents of short-circuit buses at the bottom of the cell (1) and pillar buses (2) which influence the welding area most are cut off, the serial currents are shunted to other pillar buses (2), other buses at the bottom of the cell (1) and the inter-cell standby buses (5) such that the magnetic field intensity at the welding area can be lowered to the extent that welding can be performed so as to perform welding, and such a device and method can achieve live welding of aluminum electrolytic cells overhauling under series full current.
Abstract:
An auto-rebound switching apparatus has: a body provided with a water-separating apparatus, an upper cover rotatably arranged on the rear side of the body, a passive disc rotatably arranged between the rear side of the body and the upper cover, a clutch mechanism comprising a bi-directional ratchet gear and a bi-directional pawl matching the ratchet gear, the ratchet gear being rotatably arranged on the rear side of the body and transmissively connected to the water-separating apparatus, thus allowing the ratchet gear, when rotating, to drive the water-separating apparatus into motion to allow switching, the bi-directional pawl, the upper cover, and the passive disc being interconnected, allowing the upper cover to rotate relative to the passive disc thus driving the bi-directional pawl to move between a forward rotation position, a reverse rotation position, and a detached position, and a rebound apparatus.
Abstract:
A three-phase 48-pulse rectifier transformer consists of two 24-pulse rectifier transformers phase-shifted through valve-side output windings. Each 24-pulse rectifier transformer comprises two sets of grid-side input windings and four sets of valve-side output windings. The two sets of grid-side input windings are connected in parallel and axially arranged in a split manner. Among the four sets of valve-side output windings, two sets of valve-side output windings are radially arranged in a split manner corresponding to one set of grid-side input windings, and the other two sets of valve-side output windings are also radially arranged in a split manner corresponding to the other set of grid-side input windings. The two sets of valve-side output windings that are radially split and the other two sets of valve-side output windings that are radially split are axially arranged in a split manner. The grid-side input windings of the two 24-pulse rectifier transformers are phase-shifted with respect to each other. In this way, a uniform difference of 7.5° is produced in voltages of the eight sets of valve-side output windings of the two 24-pulse rectifier transformers, and the eight sets of valve-side output windings of the two 24-pulse rectifier transformers are correspondingly connected to rectifiers to form a uniform 48-pulse rectifier transformer, which not only reduces the harmonic current generated by the rectifier, but also improves the load capacity of the rectifier.
Abstract:
A ball arm switching shower has a fixed unit and a switching mechanism. The fixed unit is provided with multiple outlet functions, a assembling slot and a water inlet passage, each outlet function is provided with a water division hole. The switching mechanism comprises a connecting part, a handle, a switching plate, a transmission shaft and a sealing piece. The connecting part can be mounted in the assembling slot in a sliding and swinging manner. The handle is fixedly connected to the connecting part. The transmission shaft can fixedly connect to the connecting part and the switching plate, so that the switching plate can be driven to swing and slide through the movement of the handle.
Abstract:
The present invention is directed to a compound of Formula (I) wherein Cy1, Cy2, L1, L2, and R1 are as defined herein, a pharmaceutical composition comprising a pharmaceutically effective amount of one or more compounds according to Formula (I) in admixture with a pharmaceutically acceptable carrier, and a method of treating a patient suffering from a PGD2-mediated disorder including, but not limited to, allergic disease (such as allergic rhinitis, allergic conjunctivitis, atopic dermatitis, bronchial asthma and food allergy), systemic mastocytosis, disorders accompanied by systemic mast cell activation, anaphylaxis shock, bronchoconstriction, bronchitis, urticaria, eczema, diseases accompanied by itch (such as atopic dermatitis and urticaria), diseases (such as cataract, retinal detachment, inflammation, infection and sleeping disorders) which is generated secondarily as a result of behavior accompanied by itch (such as scratching and beating), inflammation, chronic obstructive pulmonary diseases, ischemic reperfusion injury, cerebrovascular accident, chronic rheumatoid arthritis, pleurisy, ulcerative colitis and the like by administering to said patient a pharmaceutically effective amount of a compound according to Formula (I).