摘要:
A method for template fabrication of ultra-precise nanoscale shapes. Structures with a smooth shape (e.g., circular cross-section pillars) are formed on a substrate using electron beam lithography. The structures are subject to an atomic layer deposition of a dielectric interleaved with a deposition of a conductive film leading to nanoscale sharp shapes with features that exceed electron beam resolution capability of sub-10 nm resolution. A resist imprint of the nanoscale sharp shapes is performed using J-FIL. The nanoscale sharp shapes are etched into underlying functional films on the substrate forming a nansohaped template with nanoscale sharp shapes that include sharp corners and/or ultra-small gaps. In this manner, sharp shapes can be retained at the nanoscale level. Furthermore, in this manner, imprint based shape control for novel shapes beyond elementary nanoscale structures, such as dots and lines, can occur at the nanoscale level.
摘要:
A method for template fabrication of ultra-precise nanoscale shapes. Structures with a smooth shape (e.g., circular cross-section pillars) are formed on a substrate using electron beam lithography. The structures are subject to an atomic layer deposition of a dielectric interleaved with a deposition of a conductive film leading to nanoscale sharp shapes with features that exceed electron beam resolution capability of sub-10 nm resolution. A resist imprint of the nanoscale sharp shapes is performed using J-FIL. The nanoscale sharp shapes are etched into underlying functional films on the substrate forming a nansohaped template with nanoscale sharp shapes that include sharp corners and/or ultra-small gaps. In this manner, sharp shapes can be retained at the nanoscale level. Furthermore, in this manner, imprint based shape control for novel shapes beyond elementary nanoscale structures, such as dots and lines, can occur at the nanoscale level.
摘要:
Techniques for delivering sub-5 nm overlay control over multiple fields. One such technique reduces overlay from the wafer side using wafer-thermal actuators. In another technique, the topology of the template is optimized so that the inter-field mechanical coupling between fields in the multi-field template is reduced thereby allowing overlay to be simultaneously reduced in multiple fields in the template. A further technique combines the wafer-thermal and template actuation techniques to achieve significantly improved single and multi-field overlay performance.
摘要:
Techniques for delivering sub-5 nm overlay control over multiple fields. One such technique reduces overlay from the wafer side using wafer-thermal actuators. In another technique, the topology of the template is optimized so that the inter-field mechanical coupling between fields in the multi-field template is reduced thereby allowing overlay to be simultaneously reduced in multiple fields in the template. A further technique combines the wafer-thermal and template actuation techniques to achieve significantly improved single and multi-field overlay performance.