摘要:
Disclosed is a method of manufacturing dual orientation wafers. A trench is formed in a multi-layer wafer to a silicon substrate with a first crystalline orientation. The trench is filled with a silicon material (e.g., amorphous silicon or polysilicon trench). Isolation structures are formed to isolate the silicon material in the trench from a semiconductor layer with a second crystalline orientation. Additional isolation structures are formed within the silicon material in the trench and within the semiconductor layer. A patterned amorphization process is performed on the silicon material in the trench and followed by a recrystallization anneal such that the silicon material in the trench recrystallizes with the same crystalline orientation as the silicon substrate. The resulting structure is a semiconductor wafer with isolated semiconductor areas on the same plane having different crystalline orientations as well as isolated sections within each semiconductor area for device formation.
摘要:
Disclosed is a method of manufacturing dual orientation wafers. A trench is formed in a multi-layer wafer to a silicon substrate with a first crystalline orientation. The trench is filled with a silicon material (e.g., amorphous silicon or polysilicon trench). Isolation structures are formed to isolate the silicon material in the trench from a semiconductor layer with a second crystalline orientation. Additional isolation structures are formed within the silicon material in the trench and within the semiconductor layer. A patterned amorphization process is performed on the silicon material in the trench and followed by a recrystallization anneal such that the silicon material in the trench recrystallizes with the same crystalline orientation as the silicon substrate. The resulting structure is a semiconductor wafer with isolated semiconductor areas on the same plane having different crystalline orientations as well as isolated sections within each semiconductor area for device formation.
摘要:
A pixel sensor cell of improved dynamic range and a design structure including the pixel sensor cell embodied in a machine readable medium are provided. The pixel cell comprises a coupling transistor that couples a capacitor device to a photosensing region (e.g., photodiode) of the pixel cell, the photodiode being coupled to a transfer gate and one terminal of the coupling transistor. In operation, the additional capacitance is coupled to the pixel cell photodiode when the voltage on the photodiode is drawn down to the substrate potential. Thus, the added capacitance is only connected to the imager cell when the cell is nearing its charge capacity. Otherwise, the cell has a low capacitance and low leakage. In an additional embodiment, a terminal of the capacitor is coupled to a “pulsed” supply voltage signal that enables substantially full depletion of stored charge from the capacitor to the photosensing region during a read out operation of the pixel sensor cell. In various embodiments, the locations of the added capacitance and photodiode may be interchanged with respect to the coupling transistor. In addition, the added capacitor of the pixel sensor cell allows for a global shutter operation.
摘要:
A pixel sensor cell of improved dynamic range comprises a coupling transistor that couples a capacitor device to a photosensing region (e.g., photodiode) of the pixel cell, the photodiode being coupled to a transfer gate and one terminal of the coupling transistor. In operation, the additional capacitance is coupled to the pixel cell photodiode when the voltage on the photodiode is drawn down to the substrate potential. Thus, the added capacitance is only connected to the imager cell when the cell is nearing its charge capacity. Otherwise, the cell has a low capacitance and low leakage. In an additional embodiment, a terminal of the capacitor is coupled to a “pulsed” supply voltage signal that enables substantially full depletion of stored charge from the capacitor to the photosensing region during a read out operation of the pixel sensor cell. In various embodiments, the locations of the added capacitance and photodiode may be interchanged with respect to the coupling transistor. In addition, the added capacitor of the pixel sensor cell allows for a global shutter operation.
摘要:
A pixel sensor cell of improved dynamic range and a design structure including the pixel sensor cell embodied in a machine readable medium are provided. The pixel cell comprises a coupling transistor that couples a capacitor device to a photosensing region (e.g., photodiode) of the pixel cell, the photodiode being coupled to a transfer gate and one terminal of the coupling transistor. In operation, the additional capacitance is coupled to the pixel cell photodiode when the voltage on the photodiode is drawn down to the substrate potential. Thus, the added capacitance is only connected to the imager cell when the cell is nearing its charge capacity. Otherwise, the cell has a low capacitance and low leakage. In an additional embodiment, a terminal of the capacitor is coupled to a “pulsed” supply voltage signal that enables substantially full depletion of stored charge from the capacitor to the photosensing region during a read out operation of the pixel sensor cell. In various embodiments, the locations of the added capacitance and photodiode may be interchanged with respect to the coupling transistor. In addition, the added capacitor of the pixel sensor cell allows for a global shutter operation.
摘要:
A pixel sensor cell of improved dynamic range comprises a coupling transistor that couples a capacitor device to a photosensing region (e.g., photodiode) of the pixel cell, the photodiode being coupled to a transfer gate and one terminal of the coupling transistor. In operation, the additional capacitance is coupled to the pixel cell photodiode when the voltage on the photodiode is drawn down to the substrate potential. Thus, the added capacitance is only connected to the imager cell when the cell is nearing its charge capacity. Otherwise, the cell has a low capacitance and low leakage. In an additional embodiment, a terminal of the capacitor is coupled to a “pulsed” supply voltage signal that enables substantially full depletion of stored charge from the capacitor to the photosensing region during a read out operation of the pixel sensor cell. In various embodiments, the locations of the added capacitance and photodiode may be interchanged with respect to the coupling transistor. In addition, the added capacitor of the pixel sensor cell allows for a global shutter operation.
摘要:
A test system for testing a multilayer 3-dimensional integrated circuit (IC), where two separate layers of IC circuits are temporarily connected in order to achieve functionality, includes a chip under test with a first portion of the 3-dimensional IC, and a test probe chip with a second portion of the 3-dimensional IC and micro-electrical-mechanical system (MEMS) switches that selectively complete functional circuits between the first portion of the 3-dimensional IC in a first IC layer to circuits within the second portion of the 3-dimensional IC in a second IC layer. The MEMS switches include tungsten (W) cone contacts, which make the selective electrical contacts between circuits of the chip under test and the test probe chip and which are formed using a template of graded borophosphosilicate glass (BPSG).
摘要:
A method of forming dielectric spacers including providing a substrate comprising a first region having a first plurality of gate structures and a second region having a second plurality of gate structures and at least one oxide containing material or a carbon containing material. Forming a nitride containing layer over the first region having a thickness that is less than the thickness of the nitride containing layer that is present in the second region. Forming dielectric spacers from the nitride containing layer on the first plurality the second plurality of gate structures. The at least one oxide containing material or carbon containing material accelerates etching in the second region so that the thickness of the dielectric spacers in the first region is substantially equal to the thickness of the dielectric spacers in the second region of the substrate.
摘要:
A variable focal point lens includes a transparent tank, which comprises a transparent enclosure containing a transparent flexible membrane separating the inner volume of the transparent tank into an upper tank portion and a lower tank portion. The upper tank portion and the lower tank portion contain liquids having different indices of refraction. The transparent flexible membrane is electrostatically displaced to change the thicknesses of the first tank portion and the second tank portion in the path of the light, thereby shifting the focal point of the lens axially and/or laterally. The electrostatic displacement of the membrane may be effected by a fixed charge in the membrane and an array of enclosure-side conductive structures on the transparent enclosure, or an array of membrane-side conductive structures on the transparent membrane and an array of enclosure-side conductive structures.
摘要:
Disclosed are a system and a method of correcting systematic, design-based, parametric variations on integrated circuit chips to minimize circuit limited yield loss. Processing information and a map of a chip are stored. The processing information can indicate an impact, on a given device parameter, of changes in a value for a specification associated with a given process step. The map can indicate regional variations in the device parameter (e.g., threshold voltage). Based on the processing information and using the map as a guide, different values for the specification are determined, each to be applied in a different region of the integrated circuit chip during the process step in order to offset the mapped regional parametric variations. A process tool can then be selectively controlled to ensure that during chip manufacturing the process step is performed accordingly and, thereby to ensure that the regional parametric variations are minimized.