摘要:
A solution for managing a manufacturing environment using operating data for each of a plurality of tools in the manufacturing environment. The operating data can include actual resource consumption data and/or actual exhaust generation data for a tool while the tool implements at least a portion of a recipe to manufacture one of a plurality of types of products manufactured in the manufacturing environment. Operation of the manufacturing environment can be configured to optimize one or more aspects of resource consumption and/or exhaust generation during the manufacture of desired quantities of the plurality of types of products within a desired time frame using the operating data.
摘要:
A solution for managing a manufacturing environment using operating data for each of a plurality of tools in the manufacturing environment. The operating data can include actual resource consumption data and/or actual exhaust generation data for a tool while the tool implements at least a portion of a recipe to manufacture one of a plurality of types of products manufactured in the manufacturing environment. Operation of the manufacturing environment can be configured to optimize one or more aspects of resource consumption and/or exhaust generation during the manufacture of desired quantities of the plurality of types of products within a desired time frame using the operating data.
摘要:
An integrated circuit and a method of manufacturing an integrated circuit comprises forming an insulator over a substrate, forming a trench in the insulator and the substrate, undercutting the insulator to form a gate conductor opening between the substrate and the insulator adjacent the trench, and forming a gate oxide and gate conductor in the gate conductor opening.
摘要:
Reduced current consumption in a DRAM during standby mode is achieved by switching off the power source that is connected to, for example, the n-well.
摘要:
Improved trench forming methods for semiconductor substrates using BSG avoid the problems associated with conventional TEOS hard mask techniques. The methods comprise: (a) providing a semiconductor substrate, (b) applying a conformal layer of borosilicate glass (BSG) on the substrate; (c) forming a patterned photoresist layer over the BSG layer whereby a portion of a layer underlying the photoresist layer is exposed, (d) anisotropically etching through the exposed portion of the underlying layer, through any other layers lying between the photoresist layer and the semiconductor substrate, and into the semiconductor substrate, thereby forming a trench in the semiconductor substrate. Preferably, one or more dielectric layers are present on the substrate surface prior to application of the BSG layer. One or more chemical barrier and/or organic antireflective coating layers may be applied over the BSG layer between the BSG layer and the photoresist layer. The methods are especially useful for forming deep trenches in silicon substrates with pad dielectric layers.
摘要:
A method of forming a buried plate electrode for a trench capacitor of a semiconductor memory device is provided. Trenches are formed in a semiconductor substrate and a dopant source film is formed on the sidewalls and bottom walls of the trenches. A resist is formed on the dopant source film which fills in the trenches. The resist is recessed to remain in the trenches at a level which is below the surface of the semiconductor substrate. Impurities are implanted into the semiconductor substrate using the recessed resist as a block mask. The dopant source film is etched using the recessed resist as an etching mask and the recessed resist is then removed. The implanted impurities and dopants from the dopant source film are diffused into the semiconductor substrate to form a buried plate electrode.
摘要:
A method of patterning a layer on sidewalls of a trench in a substrate for integrated circuits includes the steps of forming an insulator layer on sidewalls of a trench in a substrate with a horizontal top surface above the sidewalls, recessing a masking material such as an organic photoresist in the trench below the top surface of the substrate such that a portion of the insulator layer on the sidewalls of the substrate is exposed, and etching the insulator layer with a gaseous hydrogen flouride-ammonia mixture. The masking material and the substrate are composed of a different material than the insulator layer.
摘要:
Hydrogen fluoride undercut of oxide layers may be reduced by using a low pressure mixture of gaseous hydrogen fluoride and gaseous ammonia mixture. Organic photoresists can be used as a masking material when using the gaseous hydrogen fluoride/ammonia mixture without resulting in an enhanced reaction rate. In addition, because of the reaction conditions, the dimensions in the oxide layer being etched can be specifically sized smaller than openings made in the overcoating masking material.
摘要:
Hydrogen fluoride undercut of oxide layers may be reduced by using a low pressure mixture of gaseous hydrogen fluoride and gaseous ammonia mixture. Organic photoresists can be used as a masking material when using the gaseous hydrogen fluoride/ammonia mixture without resulting in an enhanced reaction rate. In addition, because of the reaction conditions, the dimensions in the oxide layer being etched can be specifically sized smaller than openings made in the overcoating masking material.
摘要:
Hydrogen fluoride undercut of oxide layers may be reduced by using a low pressure mixture of gaseous hydrogen fluoride and gaseous ammonia mixture. Organic photoresists can be used as a masking material when using the gaseous hydrogen fluoride/ammonia mixture without resulting in an enhanced reaction rate. In addition, because of the reaction conditions, the dimensions in the oxide layer being etched can be specifically sized smaller than openings made in the overcoating masking material.