摘要:
Disclosed is a fluidic coupling that releasably and fluidically connects to the inlet port of an inkjet print cartridge. The fluidic coupling acts as a seal for the print cartridge and a means of lubricating and protecting the inlet port from drying, leaking ink, and air ingestion while the print cartridge is in transit and in storage. The fluidic coupling also provides an auxiliary ink reservoir for the print cartridge. The fluidic coupling further provides an ink conduit to the printhead from an external ink supply. First first and second end portions define an internal chamber, the internal chamber providing an internal fluid conduit for ink between the first and second ends of the body; and a fluidic coupling affixed to the first end of the body and in fluidic communication with the internal chamber. Optionally, there is a second fluidic coupling affixed to the second end of the body adapted to releasably seal to an outlet port of an ink supply to allow fluid communication between internal fluid conduit and the outlet port of the ink supply so as to allow ink flow from the ink supply through the second fluidic coupling, and into the internal fluid conduit.
摘要:
One embodiment of a method of storing a printhead includes opening a valve to a vent of an ink reservoir, operating a pump in a first direction to pull ink from the ink reservoir through said valve, and pumping the ink pulled from the ink reservoir to an ink supply container.
摘要:
An ink delivery system having a fluid supply and a printhead assembly, separate from and in fluid communication with the fluid supply. A primary flow path is configured to facilitate the delivery of fluid from the fluid supply to the printhead assembly, and a return flow path, at least partially separate from the primary flow path, is configured to facilitate the evacuation of fluid from the printhead assembly.
摘要:
A disposable diagnostic device and method of its use are provided. The device comprises a housing containing first and second flow paths orthogonal to each other. The first flow path commences at a sample addition port and continues through a transport channel which feeds sample to an incubation area by means of capillary flow. The incubation area comprises a signal producing system and is underneath an optically-clear window. The first flow path terminates in a top waste reservoir which receives sample and wash fluid. The second flow path begins on one side of the incubation area at an inlet port over a side reagent reservoir. Liquid flows along the second flow path from the side reagent reservoir across the incubation area into the side waste reservoir. The incubation area may comprise agitation means for homogenous dispersion of reagent into liquid. Various reagents of a signal producing system may be contained within the device and the necessary liquids added automatically by appropriate instrumentation, so as to have the assay carried out automatically, without technician involvement, providing an accurate and sensitive determination.
摘要:
An ink delivery system having at least one off-axis ink supply container and an on-axis printhead assembly. The printhead assembly includes at least one reservoir and a corresponding standpipe separated by a particle filter. At least one tube connects the off-axis ink supply container to the printhead assembly. A first valve is configured to selectively open a flow path between the tube and the reservoir. A second valve is configured to selectively open a flow path between the standpipe and the tube.A method for controlling effects of accumulated air in a printhead assembly. The printhead assembly has at least one ink reservoir and one standpipe separated by a particle filter. The printhead assembly is fluidicly connected to at least one off-axis ink supply container by at least one tube. The method includes drawing air from said printhead assembly through said standpipe into the tube.
摘要:
Systems, methodologies, media, and other embodiments associated with clearing silicate based kogation from heating resistors employed in ink jet printing are described. One exemplary system embodiment includes a silicate kogation clearing logic configured to pulse the heating resistor at a high frequency and low pulse width to heat the resistor surface to a temperature below that required to form an ink bubble and thus below that required to eject a drop of ink. Heating the resistor facilitates breaking bonds between the silicate based kogation and the heating resistor.
摘要:
An ink delivery system having at least one off-axis ink supply container and an on-axis printhead assembly. The printhead assembly includes at least one reservoir and a corresponding standpipe separated by a particle filter. At least one tube connects the off-axis ink supply container to the printhead assembly. A first valve is configured to selectively open a flow path between the tube and the reservoir. A second valve is configured to selectively open a flow path between the standpipe and the tube.
摘要:
An ink delivery system having at least one off-axis ink supply container and an on-axis printhead assembly. The printhead assembly includes at least one reservoir and a corresponding standpipe separated by a particle filter. At least one tube connects the off-axis ink supply container to the printhead assembly. A first valve is configured to selectively open a flow path between the tube and the reservoir. A second valve is configured to selectively open a flow path between the standpipe and the tube.A method for controlling effects of accumulated air in a printhead assembly. The printhead assembly has at least one ink reservoir and one standpipe separated by a particle filter. The printhead assembly is fluidicly connected to at least one off-axis ink supply container by at least one tube. The method includes drawing air from said printhead assembly through said standpipe into the tube.
摘要:
Methods and apparatus are provided for forming a seal between two or more components using a thermally cured sealing material. One exemplary method includes selectively applying an electrical signal to a heating trace on a first component, applying a sealing material between at least a portion of the first component and at least a portion of a second component, and at least partially thermally curing the sealing material using thermal energy generated by the application of the electrical signal to the heating trace.