摘要:
Provided herein are implantable systems, and methods for use therewith, for monitoring a patient's arterial blood pressure. Electrode(s) implanting within and/or on the patient's heart are used to obtain a cardiogenic impedance (CI) signal indicative of cardiac contractile activity. Additionally, a signal (e.g., PPG or IPG signal) indicative of changes in arterial blood volume remote from the patient's heart is obtained using a sensor or electrodes that are implanted remote from the patient's heart. One or more metrics indicative of pulse arrival time (PAT) are determined, where each metric can be determined by determining a time from one of the detected features of the CI signal to one of the detected features of the signal indicative of changes in arterial blood volume. Based on at least one of the metric(s) indicative of PAT, arterial blood pressure is estimated, which can include determining values indicative of systolic blood pressure, diastolic blood pressure, pulse pressure and/or mean arterial blood pressure, and/or changes in such values.
摘要:
Implantable systems, and methods for use therewith, are provided for monitoring a patient's diastolic function and/or heart failure (HF) condition. A signal indicative of changes in arterial blood volume and a signal indicative of electrical activity of the patient's heart are obtained. Beginnings of diastolic periods can be detected based on a feature of the signal indicative of changes in arterial blood volume. Ends of the diastolic periods can be detected based on a feature of the signal indicative of electrical activity of the patient's heart, or on the signal indicative of changes in arterial blood volume. Diastolic periods (DPs), isovolumic relaxation times (IVRTs) and/or diastolic filling times (DiFTs) can be estimated based on the detected beginnings of the diastolic periods and detected ends of the diastolic periods. The patient's diastolic function and/or HF condition (and/or changes therein) can be monitored based on the estimates of DP, IVRT and/or DiFT.
摘要:
Provided herein are implantable systems, and methods for use therewith, for monitoring a patient's arterial blood pressure while a patient's heart is being paced. A signal (e.g., PPG or IPG signal) indicative of changes in arterial blood volume remote from the patient's heart is obtained using a sensor or electrodes that are implanted remote from the patient's heart. One or more metrics indicative of pulse arrival time (PAT) are determined, where each metric can be determined by determining a time from a paced cardiac event to one or more predetermined features of the signal indicative of changes in arterial blood volume. Based on at the metric(s) indicative of PAT, arterial blood pressure is estimated, which can include determining values indicative of systolic blood pressure, diastolic blood pressure, pulse pressure and/or mean arterial blood pressure, and/or changes in such values.
摘要:
Provided herein are implantable systems, and methods for use therewith, for monitoring a patient's arterial blood pressure while a patient's heart is being paced. A signal (e.g., PPG or IPG signal) indicative of changes in arterial blood volume remote from the patient's heart is obtained using a sensor or electrodes that are implanted remote from the patient's heart. One or more metrics indicative of pulse arrival time (PAT) are determined, where each metric can be determined by determining a time from a paced cardiac event to one or more predetermined features of the signal indicative of changes in arterial blood volume. Based on at the metric(s) indicative of PAT, arterial blood pressure is estimated, which can include determining values indicative of systolic blood pressure, diastolic blood pressure, pulse pressure and/or mean arterial blood pressure, and/or changes in such values.
摘要:
Certain embodiments of the present invention are related to an implantable monitoring device to monitor a patient's arterial blood pressure, where the device is configured to be implanted subcutaneously. The device includes subcutaneous (SubQ) electrodes and a plethysmography sensor. Additionally, the device includes an arterial blood pressure monitor configured to determine at least one value indicative of the patient's arterial blood pressure based on at least one detected predetermined feature of a SubQ ECG and at least one detected predetermined feature of a plethysmography signal. Alternative embodiments of the present invention are directed to a non-implantable monitoring device to monitor a patient's arterial blood pressure based on features of a surface ECG and a plethysmography signal obtained from a non-implanted sensor.
摘要:
An implanted sensor produces a signal that is indicative of changes in arterial blood volume, such as a photoplethysmography signal or an impedance plethysmography signal. A metric is determined from the signal for each of the plurality of periods. Changes in cardiac contractility are monitored based on changes in the determined metric.
摘要:
Provided herein are implantable systems, and methods for use therewith, for monitoring a patient's electromechanical delay (EMD). Paced cardiac events are caused by delivering sufficient pacing stimulation to cause capture to the patient's heart. A cardiogenic impedance (CI) signal, indicative of cardiac contractile activity in response to the pacing stimulation being delivered, is obtained. One or more predetermined features of the CI signal are detected, and a value indicative of the patient's EMD is determined by determining a time between a delivered pacing stimulation and at least one of the detected one or more features of the CI signal.
摘要:
Methods and systems for monitoring an organ of interest within a patient use one or more sensors to obtain one or more signals indicative of one or more of blood being provided to the organ of interest, blood being received from the organ of interest, and blood present in the organ of interest. Changes in an amount of blood being provided to the organ of interest, an amount of blood being received from the organ of interest, and/or an amount of blood present in the organ of interest are monitored based on changes in the obtained signal(s). Such methods and systems can be used to detect dysfunction of the organ of interest or tumor growth in the organ of interest, but are not limited thereto.
摘要:
Implantable systems, and methods for use therewith, enable the monitoring of a patient's electromechanical delay (EMD) and arterial blood pressure. Paced cardiac events are caused by delivering sufficient pacing stimulation to cause capture. A cardiogenic impedance (CI) signal, indicative of cardiac contractile activity in response to the pacing stimulation being delivered, is obtained. One or more predetermined features of the CI signal are detected, and a value indicative of the patient's EMD is determined by determining a time between a delivered pacing stimulation and at least one of the detected one or more features of the CI signal. The value indicative of EMD can be used to more accurately determine metrics indicative of pulse arrival time (PAT), which can be used to estimate arterial blood pressure.
摘要:
Implantable systems, and methods for use therewith, are provided for monitoring a patient's diastolic function and/or heart failure (HF) condition. A signal indicative of changes in arterial blood volume and a signal indicative of electrical activity of the patient's heart are obtained. Beginnings of diastolic periods can be detected based on a feature of the signal indicative of changes in arterial blood volume. Ends of the diastolic periods can be detected based on a feature of the signal indicative of electrical activity of the patient's heart, or on the signal indicative of changes in arterial blood volume. Diastolic periods (DPs), isovolumic relaxation times (IVRTs) and/or diastolic filling times (DiFTs) can be estimated based on the detected beginnings of the diastolic periods and detected ends of the diastolic periods. The patient's diastolic function and/or HF condition (and/or changes therein) can be monitored based on the estimates of DP, IVRT and/or DiFT.