Abstract:
Methods, systems, and apparatuses, including electrical circuitry, are described for auto-negotiation. Active cables, active backplanes, and line cards may include one or more instances of electrical circuitry and/or integrated circuits that intercept advertisements of standard auto-negotiation protocol signaling from an initiating device for establishment of communication links with a receiving device. Auto negotiation information in the intercepted signaling may be translated and encoded into signaling in accordance with the capabilities of the receiving device. Active cables and active backplanes may also include one or more connection components between instances of electrical circuitry and/or integrated circuits to provide high-speed transmission of data packets encapsulating the auto-negotiation information in a format that differs from the standard auto-negotiation protocol.
Abstract:
Aspects of a method and system for encoding in 100G-KR networking are described. In one example embodiment, a coding method uses certain forward error correcting codes based on a given transcoding method and delivers the codes according to burst interleaving. In another example, a coding method includes receiving source data from a plurality of physical lanes, combining data from the physical lanes to generate a block, transcoding the block, and encoding a data stream including the transcoded block.
Abstract:
A communication system and a method are provided. The communication system includes an encoder configured to encode source data and output an encoded frame including a mother code or a plurality of concatenated daughter codes based on an encoding option. The mother code and the plurality of concatenated daughter codes have a same number of coded data symbols. The mother code includes a first source number of source symbols and a first parity number of parity symbols. The daughter code includes fewer source symbols and fewer parity symbols than the mother code.
Abstract:
According to an example embodiment, a communications receiver may include a variable gain amplifier (VGA) configured to amplify received signals, a VGA controller configured to control the VGA, a plurality of analog to digital converter (ADC) circuits coupled to an output of the VGA, wherein the plurality of ADC circuits are operational when the communications receiver is configured to process signals of a first communications protocol, and wherein only a subset of the ADC circuits are operational when the communications receiver is configured to process signals of a second communications protocol.
Abstract:
Communication device employing binary product coding with selective additional cyclic redundancy check (CRC) therein. Product code encoding (e.g., employing row and column encoding of matrix formatted bits, selectively with interleaving and/or permutation of the bits therein) may be combined with additional error correction code (ECC) or forward error correction (FEC) coding thereby generating coded bits for use in generating a signal to be launched into a communication channel Various ECCs/FECs may be employed including a BCH (Bose and Ray-Chaudhuri, and Hocquenghem) code, a Reed-Solomon (RS) code, an LDPC (Low Density Parity Check) code, etc. The redundancy of such coded signals as generated using the principles herein is in the range of approximately 7%, and hard decision decoding may be performed on such coded signals generated herein. In accordance with decoding such signals, various bit decisions (within certain iterations) may be selectively ignored and/or reverted back to previous bit decisions.
Abstract:
A communication system and a method are disclosed. The communication system includes an encoder configured to encode source data and output an encoded frame including a mother code or a plurality of concatenated daughter codes based on an encoding option. The mother code and the plurality of concatenated daughter codes have a same number of coded data symbols. The mother code includes a first source number of source symbols and a first parity number of parity symbols. The daughter code includes fewer source symbols and fewer parity symbols than the mother code.
Abstract:
Aspects of a method and system for encoding in 100G-KR networking are described. In one example embodiment, a coding method uses certain forward error correcting codes based on a given transcoding method and delivers the codes according to burst interleaving. In another example, a coding method includes receiving source data from a plurality of physical lanes, combining data from the physical lanes to generate a block, transcoding the block, and encoding a data stream including the transcoded block.
Abstract:
Communication device employing binary product coding with selective additional cyclic redundancy check (CRC) therein. Product code encoding (e.g., employing row and column encoding of matrix formatted bits, selectively with interleaving and/or permutation of the bits therein) may be combined with additional error correction code (ECC) or forward error correction (FEC) coding thereby generating coded bits for use in generating a signal to be launched into a communication channel Various ECCs/FECs may be employed including a BCH (Bose and Ray-Chaudhuri, and Hocquenghem) code, a Reed-Solomon (RS) code, an LDPC (Low Density Parity Check) code, etc. The redundancy of such coded signals as generated using the principles herein is in the range of approximately 7%, and hard decision decoding may be performed on such coded signals generated herein. In accordance with decoding such (e.g., possibly by performing bit-flipping), various bit decisions (within certain iterations) may be selectively ignored and/or reverted back to previous bit decisions.
Abstract:
According to an example embodiment, a communications receiver may include a variable gain amplifier (VGA) configured to amplify received signals, a VGA controller configured to control the VGA, a plurality of analog to digital converter (ADC) circuits coupled to an output of the VGA, wherein the plurality of ADC circuits are operational when the communications receiver is configured to process signals of a first communications protocol, and wherein only a subset of the ADC circuits are operational when the communications receiver is configured to process signals of a second communications protocol.