摘要:
The invention is a pressurized water recovery system for a fuel cell power plant including at least one fuel cell having an electrolyte between anode and cathode electrodes for producing an electric current from a reducing fluid and an oxidant stream. A coolant loop directs a coolant fluid from a reservoir through a coolant passage to the fuel cell and back to the reservoir, and the coolant loop also receives coolant fluid through water lines secured between condensing heat exchangers and the coolant reservoir. A process exhaust passage directs a process exhaust stream from adjacent the cathode and anode electrodes out of the fuel cell and into a condensing heat exchanger. Whenever the power plant is under coolant stress, a process exhaust valve selectively directs a portion of the process exhaust stream out of the process exhaust passage to a supercharger that pressurizes the received portion of the process exhaust stream and directs the pressurized portion to a pressurized condensing heat exchanger. Because the process exhaust stream within the pressurized heat exchanger is under pressure, an increased amount of water condenses out of the stream without a need to continuously pressurize any of the fuel cell components. The increased amount of condensed water is directed to the coolant reservoir, and whenever the coolant stress ends, the process exhaust valve and supercharger stop pressurizing any portion of the process exhaust stream.
摘要:
A fuel cell system includes a fuel cell for reacting a hydrogen rich gas; a fuel processor system for converting a hydrocarbon fuel-steam mixture into said hydrogen rich gas; and a system for preparing the hydrocarbon fuel-steam mixture which includes (a) structure for superheating a hydrocarbon fuel so as to provide a superheated fuel, and (b) structure for mixing water with the superheated fuel so as to provide the hydrocarbon fuel-steam mixture.
摘要:
The invention is a water retention system for a fuel cell power plant having at least one fuel cell and a coolant loop with a coolant reservoir and coolant passages for directing a coolant fluid through the fuel cell. An air conditioning unit is provided for directing a refrigerant to a first heat exchanger that cools secondary process air and for directing water condensed from the secondary process air to the coolant reservoir. The air conditioning unit also directs the refrigerant to a second heat exchanger that cools the coolant fluid within the coolant loop, and to a third heat exchanger that cools a plant exhaust stream exiting the plant. Water condensed from the plant exhaust is also directed from the third heat exchanger into the coolant reservoir.
摘要:
A method and apparatus for removing contaminants from the coolant supply of a fuel cell power plant, wherein coolant which has been exhausted from the fuel cell power plant is fed to an oxidant manifold. The exhausted coolant interacts with the oxidant flowing through the oxidant manifold, thereby effectuating removal of contaminants from the exhausted coolant.
摘要:
The present invention relates to a method and apparatus for creating steam from the cooling stream of a proton exchange membrane (PEM) fuel cell. As the cooling stream exits the PEM fuel cell, a portion of the cooling fluid is extracted from the circulating cooling stream, thereby creating a secondary stream of cooling fluid. This secondary stream passes through a restriction, which decreases the pressure of the secondary stream to its saturation pressure, such that when the secondary stream enters a flash evaporator it transforms into steam. Creating steam from the cooling stream of a PEM fuel cell power plant provides the fuel processor with a co-generated source of steam without adding a significant amount of auxiliary equipment to the power plant.
摘要:
A power plant for the generation of electricity utilizes high temperature fuel cells, such as molten carbonate fuel cells, as its main power supply. Part of the oxidant exhaust stream from the fuel cell is recycled through the fuel cell. Waste energy from the fuel cell in the form of exhaust gases, such as part of the oxidant exhaust, drives a turbocharger for compressing the oxidant used in the fuel cell. In a preferred embodiment the oxidant exhaust also is the source of energy for powering a bottoming cycle, such as a steam driven turbogenerator. Power plant efficiency is improved by making maximum use of the energy and heat generated within the system.
摘要:
A phosphoric acid fuel cell (PAFC) system includes a cell stack assembly having an anode, a cathode and a coolant portion. At least one heat exchanger is fluidly interconnected with at least one of the anode, the cathode and the coolant portion and provides a fluid path for receiving a fluid from the anode, the cathode and/or the coolant portion. An absorption cycle refrigerant system includes an absorber having a solution of refrigerant and absorbent, and an absorbent loop and a refrigerant loop communicating with the absorber and respectively carrying absorbent and refrigerant. The at least one heat exchanger is arranged in the absorbent loop and is configured to transfer heat from the fuel cell system to the absorption chiller.
摘要:
A fuel cell power plant with enhanced water recovery includes a fuel cell power plant adapted to receive a reducing fluid and an oxidant and to generate therefrom electricity and an at least partially saturated exhaust stream; a mass and energy transfer device defining a first flow passage for the wet exhaust stream and a second flow passage for an oxidant stream, the first flow passage being in mass transfer relationship with the second flow passage; and an apparatus for cooling at least one of the oxidant stream, the exhaust stream and the mass and energy transfer device, whereby water is transferred from the exhaust stream to the oxidant stream so as to produce an at least partially saturated oxidant stream. A method is also disclosed.
摘要:
An improved water management system for PEM fuel cells is provided. Catalyst layers are disposed on both sides of a proton exchange membrane. Porous plates are positioned adjacent the catalyst layers. Water transport plates are positioned adjacent the porous plates and the reactant gas are humidified at their inlets, in one embodiment by fins, while moisture is removed in the fuel flow path and at the oxidant outlet, in one embodiment by other fins.
摘要:
An operating system for a direct antifreeze cooled fuel cell power plant is disclosed for producing electrical energy from reducing and process oxidant fluid reactant streams. The system includes at least one fuel cell for producing electrical energy from the reducing and oxidant fluid streams; fuel processing components for processing a hydrocarbon fuel into the reducing fluid; a thermal management system that directs flow of a cooling fluid for controlling heat within the plant including a porous water transport plate adjacent and in fluid communication with a cathode catalyst of the fuel cell; a direct antifreeze solution passing through the water transport plate; and, a split oxidant passage that directs the process oxidant stream into and through the fuel cell.