Abstract:
A stamp face forming apparatus includes: a stamp face forming unit having a plurality of heating elements arranged in a direction along a surface on which a porous stamp face material being able to become nonporous by heating is held, and a drive circuit for controlling the heating states of the plurality of heating elements, the stamp face forming unit being configured to form a stamp face on the stamp face material while pressing the stamp face material; and a control unit configured to control the drive circuit of the stamp face forming unit in such a manner as to reduce the heating amount per one dot to be heated of the stamp face material in the arrangement direction of the plurality of heating elements corresponding to a decreasing length of the stamp face material in the arrangement direction of the plurality of heating elements.
Abstract:
A stamp-face platemaking device transports a medium holder inserted into a plate insertion portion to a printing unit. The medium holder holds a stamp face material at a center portion of a plate-like member, and has a cutout portion in one side end portion thereof. An optical sensor detects the top end portion of the medium holder on a sensor scanning line in the inserting direction, and the cutout start point and the cutout end point of the cutout portion. The size of the stamp face material in the inserting direction and/or the size of the stamp face material in a direction perpendicular to the inserting direction are set based on the positions of two of the detected end portions. When the cutout end point is detected, platemaking with the stamp face material is started. The cutout portion can have a wedge-like shape or a U-shape, or can change its positions and/or sizes.
Abstract:
A stamping-face plate holder is provided. The stamping-face plate holder comprises a plate holding member formed with a positioning recess for receiving and positioning a stamping-face plate and a film for covering the stamping-face plate held in the plate holding member. The stamping-face plate is made of a porous material impregnated with ink. The plate holding member consists of a top paper board and a bottom paper board, both boards being integrated by adhering and the positioning recess is formed in the top paper board. The film covers the whole surface of the top paper board and adheres to the top paper board excepting the stamping-face plate held therein.
Abstract:
A stamp-face forming apparatus is provided for forming a stamp face. The apparatus has a stamp-face forming unit which is provided with plural heating elements disposed so as to face a surface of a stamp face material, and forms the stamp face on the stamp face material, the stamp face material includes porous material which can be non-porous when heated, and the stamp face material is detachably held in a holding body and is at least partially coated with a film. Further, the apparatus has a controlling unit for controlling the stamp-face forming unit such that an amount of heat per unit area to be applied to a part of the film facing at least one edge portion of the stamp face material is larger than an amount of heat per unit area applied to apart of the film facing the other portion of the stamp face material to be non-porous.
Abstract:
A printer includes a conveyor roller for conveying a long printing tape having an adhesive but no release paper on a back surface thereof, a printing mechanism for performing printing on the printing tape conveyed, a drive unit for rotationally driving the conveyor roller, and a control unit for controlling the drive unit so that a rotational speed thereof becomes a constant speed slower than a standard speed when the printing tape is initially conveyed and then becomes the standard speed after it is conveyed a contact length of the conveyor roller with the printing tape. Thus, a risk can be prevented of a tape jam occurring in the printer due to the tape member remaining sticking to the conveyor roller when it is conveyed for the next printing because the tape member with the adhesive has been left stationary long in the printer.
Abstract:
A stamp-face platemaking device transports a medium holder inserted into a plate insertion portion to a printing unit. The medium holder holds a stamp face material in a plate-like member, and has a predetermined pattern in a side end portion thereof. An optical sensor detects the top end portion of the medium holder on a sensor scanning line in the inserting direction, and the pattern start point and the pattern end point of the predetermined pattern. At least one of the horizontal and vertical sizes of the stamp face material is set based on the positions of two of the detected end portions. When the pattern end point is detected, platemaking with the stamp face material is started.
Abstract:
a manufacturing of a printing plate from a thermoplastic porous material comprises a thermal head with a plurality of heater elements, acquire print data of a print pattern including pixel data, with each item of pixel data corresponding to each area of the surface of the porous material partitioned into a lattice shape; identify, print pixel data that is part of the print pattern, and non-print pixel data that is not comprising the print pattern; apply a first heat quantity to a first area corresponding to the non-print pixel data by at least one first heater element, that makes contact with the first area; apply a second heat quantity that is smaller than the first heat quantity to a second area by the second heater element that makes contact with the second area identified by the print pixel data, the second area being where ink readily runs.
Abstract:
A stamp face forming apparatus includes a stamp face forming part including a plurality of heating elements arranged in a direction along a surface holding a porous stamp face material that can be made non-porous by heating, and a drive circuit for controlling heat generating states of the plurality of heating elements to form a stamp face on the stamp face material; and a controller for controlling the drive circuit of the stamp face forming part by adjusting a signal to be applied to the drive circuit such that an amount of heat per dot for a dot to be heated directly adjacent to a dot to be non-heated is less than an amount of heat per dot for a dot to be heated not directly adjacent to the dot to be non-heated in image data for forming the stamp face.
Abstract:
A computer readable non-transitory recording medium storing a control program for controlling a manufacturing apparatus which manufactures a printing plate from a thermoplastic porous material and comprises a thermal head with a plurality of heater elements, the control program causing a computer to: acquire print data corresponding to a print pattern and including pixel data, with each item of pixel data corresponding to each area of the surface of the porous material partitioned into a lattice shape; identify, based on the print data, print pixel data that is part of the pixel data and is pixel data comprising the print pattern, and non-print pixel data that is the other part of the pixel data and is pixel data not comprising the print pattern; selectively apply a first heat quantity to a first area corresponding to the non-print pixel data by at least one first heater element, among the plurality of heater elements provided on the thermal head, that makes contact with the first area; and selectively apply a second heat quantity that is smaller than the first heat quantity to a second area by at least one second heater element, among the plurality of heater elements, that makes contact with the second area identified by the control data of the print pixel data, the second area being where ink readily runs.