Abstract:
Techniques are provided herein for optimizing boot order for devices in a data center environment. These techniques may be embodied as a method, apparatus and instructions in a computer-readable storage media to perform the method. A computing apparatus having connectivity to a network receives instructions from a management device in the network. The instructions comprise attributes that are associated with boot devices hosted by the computing apparatus. The attributes are analyzed to determine a priority order for the boot devices. One or more boot devices hosted by the computing apparatus is removed from an initialization process when the one or more boot devices do not match the attributes in the instructions. The remaining boot devices, other than the one or more boot device removed from the initialization process, are initialized in accordance with the priority order.
Abstract:
Presented herein are techniques for resolving VxAN (VSANs and VLANs) networking connectivity, prior to server or domain migration. When UCS domains receive a workload or service profile from a UCS Central Controller, required VLANs/VSANs are checked for deployment for that UCS domain in Fabric Interconnects, and once VLANs/VSANs are successfully confirmed, the workload is deployed into one of the compute servers in that domain.
Abstract:
There is disclosed herein, by way of example, an enterprise server computing platform configured to provide stateless computing, wherein each node has no set configuration, including for example, MAC addresses, UUIDs, firmware, and BIOS by way of non-limiting example. Certain devices or peripherals may be considered “out-of-band,” meaning that they are discoverable and configurable in standby power by a baseboard management controller (BMC) without need for an OS. Certain other peripherals are considered “in-band,” meaning that they may need an OS for discovery and configuration. According to one or more example embodiments of this Specification, a system and method are disclosed for automatically discovering and configuring out-of-band devices on a server. Out-of-band devices may then be disabled, and the server is booted with minimal resources and a bootstrap OS to discover and configure in-band devices.
Abstract:
Cooperative boot techniques enable sharing of information in an enterprise computing system so as to optimize performance of the system. For example, in an enterprise computing system comprising a management server, one or more server computers, and a storage subsystem, the management server monitors the one or more server computers for a notification that a server computer has started boot operations. The management server determines that a first server computer has started boot operation, and notifies the storage subsystem that a boot-data request is forthcoming from the first server computer. The storage subsystem is notified that the first server computer has started boot operations before the first server computer has completed boot operations so that that the storage subsystem can prepare data likely to be requested in the boot-data request.
Abstract:
An example method for cloud-based resource availability calculation of a network environment is provided and includes receiving a plurality of system error log (SEL) data in real time at a virtual appliance executing in a first network. The SEL data is received from a remote second network indicating system events associated with corresponding resources in the second network. The method further includes calculating a resource availability (RA) index indicative of availability of resources for workload deployment in the second network, and sending the RA index to a management application executing in the second network for appropriate management and allocation of resources in the second network. In specific embodiments, the method further includes receiving a SEL inventory associated with a specific resource in the second network, and updating the RA index based on the SEL inventory.
Abstract:
There is disclosed herein, by way of example, an enterprise server computing platform configured to provide stateless computing, wherein each node has no set configuration, including for example, MAC addresses, UUIDs, firmware, and BIOS by way of non-limiting example. Certain devices or peripherals may be considered “out-of-band,” meaning that they are discoverable and configurable in standby power by a baseboard management controller (BMC) without need for an OS. Certain other peripherals are considered “in-band,” meaning that they may need an OS for discovery and configuration. According to one or more example embodiments of this Specification, a system and method are disclosed for automatically discovering and configuring out-of-band devices on a server. Out-of-band devices may then be disabled, and the server is booted with minimal resources and a bootstrap OS to discover and configure in-band devices.
Abstract:
Techniques are provided herein for optimizing boot order for devices in a data center environment. These techniques may be embodied as a method, apparatus and instructions in a computer-readable storage media to perform the method. A computing apparatus having connectivity to a network receives instructions from a management device in the network. The instructions comprise attributes that are associated with boot devices hosted by the computing apparatus. The attributes are analyzed to determine a priority order for the boot devices. One or more boot devices hosted by the computing apparatus is removed from an initialization process when the one or more boot devices do not match the attributes in the instructions. The remaining boot devices, other than the one or more boot device removed from the initialization process, are initialized in accordance with the priority order.
Abstract:
An example method for cloud-based resource availability calculation of a network environment is provided and includes receiving a plurality of system error log (SEL) data in real time at a virtual appliance executing in a first network. The SEL data is received from a remote second network indicating system events associated with corresponding resources in the second network. The method further includes calculating a resource availability (RA) index indicative of availability of resources for workload deployment in the second network, and sending the RA index to a management application executing in the second network for appropriate management and allocation of resources in the second network. In specific embodiments, the method further includes receiving a SEL inventory associated with a specific resource in the second network, and updating the RA index based on the SEL inventory.
Abstract:
An example method for computing migration sphere of workloads in a network environment is provided and includes receiving, at a virtual appliance in a network, network information from a plurality of remote networks, analyzing a service profile associated with a workload to be deployed in one of the remote networks and indicating compute requirements and storage requirements associated with the workload, and generating a migration sphere comprising compute resources in the plurality of networks that meet at least the compute requirements and storage requirements associated with the workload, the workload being successfully deployable on any one of the compute resources in the migration sphere.