Forging Process of Magnesium Alloy Wheel Hub

    公开(公告)号:US20230071499A1

    公开(公告)日:2023-03-09

    申请号:US17576257

    申请日:2022-01-14

    Abstract: The disclosure discloses the forging process of a magnesium alloy wheel hub comprises the following steps: step 1, heating a magnesium alloy bar to 350-420° C. and keeping the temperature for 20 minutes; step 2, forging and forming the bar under a 6000-ton forging press, and controlling the forging process in sections. The forging process of the disclosure adopts sectional control, different forging process parameters are adopted in different forging stages, so that magnesium alloy bars can exert maximum forgeability in different deformation stages, make magnesium alloy deformation process more continuous, make forging process easier, obtain forged magnesium alloy wheel hub with excellent properties, and greatly improve forging process and processing efficiency.

    Method of Producing a Magnesium Alloy Wheel Hub

    公开(公告)号:US20220410252A1

    公开(公告)日:2022-12-29

    申请号:US17576220

    申请日:2022-01-14

    Abstract: The disclosure discloses a method of producing a magnesium alloy wheel hub, comprises the following steps: step 1, heating a magnesium alloy bar to 350-430° C. and keeping the temperature for 20 minutes; step 2, initially forging and forming the bar under a forging press, the forging speed is 6-15 mm/s; step 3, finally forging and forming the bar under a forging press, and the forging speed is 5-8 mm/s; step 4, testing the microstructure and material properties of the final forged blank to obtain the layered material property distribution on the thickness of the blank; step 5, according to the layered material property distribution on the thickness of the blank obtained in step 4, selecting the part that meets the requirements to make a magnesium alloy wheel hub. According to the different properties in the thickness direction of the blank, the spoke orientation of the magnesium alloy wheel can be quickly designed according to the needs, and the magnesium alloy wheel that meets the usage performance can be obtained, which greatly improves the design and processing efficiency.

    Spinning process of magnesium alloy wheel hub

    公开(公告)号:US12091736B2

    公开(公告)日:2024-09-17

    申请号:US17576276

    申请日:2022-01-14

    CPC classification number: C22F1/06 B21J1/06

    Abstract: The disclosure discloses a spinning process of a magnesium alloy wheel hub, which comprises the following steps: step 1, heating a magnesium alloy bar at 350-430° C. and keeping the temperature for 20 minutes; step 2, initially forging and forming on the bar under a forging press, wherein the forging down-pressing speed is 6-15 mm/s; step 3, finally forging and forming on the bar under a forging press, wherein the forging down-pressing speed is 5-8 mm/s; step 4, stress relief annealing on the final forged magnesium alloy blank; step 5, solid dissolving on the annealed magnesium alloy blank; step 6, taking out the solid-dissolved blank and directly spinning by a spinning machine; step 7, heating treatment and aging treatment. The magnesium alloy wheel hub with excellent performance is obtained by the process, and the spinning process and processing efficiency are greatly improved.

    Method of producing a magnesium alloy wheel hub

    公开(公告)号:US11745252B2

    公开(公告)日:2023-09-05

    申请号:US17576220

    申请日:2022-01-14

    CPC classification number: B21K1/40 B21J1/06

    Abstract: The disclosure discloses a method of producing a magnesium alloy wheel hub, comprises the following steps: step 1, heating a magnesium alloy bar to 350-430° C. and keeping the temperature for 20 minutes; step 2, initially forging and forming the bar under a forging press, the forging speed is 6-15 mm/s; step 3, finally forging and forming the bar under a forging press, and the forging speed is 5-8 mm/s; step 4, testing the microstructure and material properties of the final forged blank to obtain the layered material property distribution on the thickness of the blank; step 5, according to the layered material property distribution on the thickness of the blank obtained in step 4, selecting the part that meets the requirements to make a magnesium alloy wheel hub. According to the different properties in the thickness direction of the blank, the spoke orientation of the magnesium alloy wheel can be quickly designed according to the needs, and the magnesium alloy wheel that meets the usage performance can be obtained, which greatly improves the design and processing efficiency.

    Spinning Process of Magnesium Alloy Wheel Hub

    公开(公告)号:US20230080640A1

    公开(公告)日:2023-03-16

    申请号:US17576276

    申请日:2022-01-14

    Abstract: The disclosure discloses a spinning process of a magnesium alloy wheel hub, which comprises the following steps: step 1, heating a magnesium alloy bar at 350-430° C. and keeping the temperature for 20 minutes; step 2, initially forging and forming on the bar under a forging press, wherein the forging down-pressing speed is 6-15 mm/s; step 3, finally forging and forming on the bar under a forging press, wherein the forging down-pressing speed is 5-8 mm/s; step 4, stress relief annealing on the final forged magnesium alloy blank; step 5, solid dissolving on the annealed magnesium alloy blank; step 6, taking out the solid-dissolved blank and directly spinning by a spinning machine; step 7, heating treatment and aging treatment. The magnesium alloy wheel hub with excellent performance is obtained by the process, and the spinning process and processing efficiency are greatly improved.

    Magnesium alloy for wheel and preparation method thereof

    公开(公告)号:US20230074156A1

    公开(公告)日:2023-03-09

    申请号:US17576239

    申请日:2022-01-14

    Abstract: The disclosure discloses a magnesium alloy for wheels, comprising in mass percentage: Al: 2-3.0 wt. %; Zn: 0.5-1.0 wt. %; Mn: 0.3-0.5 wt. %; Ce: 0.15-0.3 wt. %; La: 0.05-0.1 wt. %, the balance is Mg. The magnesium alloy of the present invention takes Al element and Mn element as main alloying elements, supplemented by trace Ce and La elements as alloying process, and the nano-scale Mn-rich precipitated phase obtained during homogenization and the segregation of rare earth elements Ce and La at the interface and grain boundary of Mn-rich precipitated phase are used to inhibit the coarsening during extrusion and forging, so as to improve the strength and plastic deformation ability of the alloy.

    Magnesium Alloy Material Smelting Device
    8.
    发明公开

    公开(公告)号:US20230194176A1

    公开(公告)日:2023-06-22

    申请号:US17676302

    申请日:2022-02-21

    CPC classification number: F27D27/00 C22C1/03 F27M2003/13

    Abstract: The disclosure discloses a magnesium alloy material smelting device, comprising a furnace, a disc packing device, the disc packing device comprising a stirring shaft, a packing basket, a disc stirring head, the stirring shaft connected with a packing basket, the bottom of the packing basket connected with a disc stirring head, the disc stirring head comprising a plurality of stirring wings, the stirring wings connected with the packing basket and the stirring disc, the connecting ends of the stirring wings connected with each other, the stirring ends extending to the edge of the stirring disc, and the sidewall of the packing basket provided with a liquid passage hole; during the process of preparing and processing the magnesium alloy, the disc stirring head may accelerate the diffusion, the rotation of the disc stirring head may divide the melt into upper and lower layers, and the upper layer of the melt forms a solution vortex to accelerate the diffusion of the master alloy elements; the lower melt keeps relatively static to avoid the upturn of precipitated slag and shorten the precipitation time of slag, thereby improving the productivity.

    Forging process of magnesium alloy wheel hub

    公开(公告)号:US11660659B2

    公开(公告)日:2023-05-30

    申请号:US17576257

    申请日:2022-01-14

    CPC classification number: B21K1/40 B21J1/06 B21J5/008 B60B2310/208

    Abstract: The disclosure discloses the forging process of a magnesium alloy wheel hub comprises the following steps: step 1, heating a magnesium alloy bar to 350-420° C. and keeping the temperature for 20 minutes; step 2, forging and forming the bar under a 6000-ton forging press, and controlling the forging process in sections. The forging process of the disclosure adopts sectional control, different forging process parameters are adopted in different forging stages, so that magnesium alloy bars can exert maximum forgeability in different deformation stages, make magnesium alloy deformation process more continuous, make forging process easier, obtain forged magnesium alloy wheel hub with excellent properties, and greatly improve forging process and processing efficiency.

    Method for manufacturing special vehicle wheels with 7000 series aluminum alloy

    公开(公告)号:US11981985B2

    公开(公告)日:2024-05-14

    申请号:US17576201

    申请日:2022-01-14

    CPC classification number: C22F1/047 B21D53/264 C22C21/08

    Abstract: The disclosure discloses a method for manufacturing special purpose vehicle wheels by using 7000 series aluminum alloys, comprising the following steps: step 1, smelting 7000 series aluminum alloys in a smelting furnace; step 2, making the solution obtained in step 1 into an aluminum alloy ingot blank through a spraying and forming process; step 3, extruding the aluminum alloy ingot blank of step 2 to obtain an extrusion bar; step 4, sawing the extrusion bar into blanks and heating them; step 5, rolling the blank into a cake; step 6, putting the cake into a press for forging and forming; step 7, spinning and forming the wheel rim. The wheel manufactured by the method for manufacturing special vehicle wheels with 7000 series aluminum alloys in the present disclosure has high and stable conductivity, qualified impact test and good bending and radial fatigue performance.

Patent Agency Ranking