Abstract:
The invention relates to a method and apparatus for raising the temperature and mixing efficiency of mainly non-combustible pulverous solid particles so high, that a desired smelting and volatilizing is achieved. The method is characterized in that the heating and mixing are carried out in at least two stages. Advantageously the reactions are made to happen in a suspension smelting furnace, such as a flash smelting furnace.
Abstract:
The disclosure discloses a magnesium alloy material smelting device, comprising a furnace, a disc packing device, the disc packing device comprising a stirring shaft, a packing basket, a disc stirring head, the stirring shaft connected with a packing basket, the bottom of the packing basket connected with a disc stirring head, the disc stirring head comprising a plurality of stirring wings, the stirring wings connected with the packing basket and the stirring disc, the connecting ends of the stirring wings connected with each other, the stirring ends extending to the edge of the stirring disc, and the sidewall of the packing basket provided with a liquid passage hole; during the process of preparing and processing the magnesium alloy, the disc stirring head may accelerate the diffusion, the rotation of the disc stirring head may divide the melt into upper and lower layers, and the upper layer of the melt forms a solution vortex to accelerate the diffusion of the master alloy elements; the lower melt keeps relatively static to avoid the upturn of precipitated slag and shorten the precipitation time of slag, thereby improving the productivity.
Abstract:
A process and apparatus for supplying solid feed materials for a direct smelting process to solids injection lances of a direct smelting vessel is disclosed. The feed materials supply apparatus includes a supply line (L) for conveying iron-containing material and solid carbonaceous material under pressure to solids injection lances (7), and the supply line includes a main feeder line section (15) and a plurality of branch line sections (17) extending from the main feeder line section. Each branch line section is connected to one solids injection lance for supplying iron-containing material and carbonaceous material to that lance. The apparatus further includes an assembly for dispensing iron-containing material under pressure into the main feeder line section of the supply line and an assembly for dispensing carbonaceous material under pressure into the main feeder line section of the supply line.
Abstract:
A traveling hearth for producing reduced metal by charging and stacking a raw material containing a metal-containing material and a solid-reducing material on a horizontally moving hearth, arranged for disposing a solid-reducing material layer on the hearth, forming concave portions at the solid-reducing material surface, stacking the raw material on the surface of the solid-reducing material layer, reducing the raw material by at least once heating and melting the material on the hearth to separate metal and gangue and ash ingredients, and discharging metal from the hearth.
Abstract:
A method and corresponding apparatus for improving the control and efficiency of a combustion reaction in a flash smelting furnace, having the steps of mixing a first oxidizing gas having a first oxygen concentration with solid particles consisting of at least one combustible component and at least one incombustible component, directing the mixture of solid particles and said first oxidizing gas into a combustion chamber of the flash smelting furnace, burning the mixture of solid particles and oxidizing gas in a first flame portion to provide for the smelting of the solid particles, directing an auxiliary fuel into the combustion chamber to surround said first flame portion, directing a second oxidizing gas having a second oxygen concentration into the combustion chamber to surround the first flame portion and mix with the auxiliary fuel, burning the auxiliary fuel and the second oxidizing gas to create a second flame portion surrounding the first flame portion, controlling the flow of the first and second oxidizing gases and the auxiliary fuel to provide a temperature gradient between the first flame portion and the second flame portion for maintaining a desired temperature of the particles leaving the flame envelope during the first stage of smelting, accumulating treated material downstream of said flame envelope, and further directing a stream of additional oxidizing gas to oxidize at least a fraction of combustible components left inside the accumulated material.
Abstract:
The present invention relates to improvements to an induction smelting process. It relates to a hybrid combination of plasma over induction for a superefficient continuous smelting process; and real-time monitoring and adjustment of the smelting process. Disclosed is a hybrid smelting system comprising a real-time controller and a reduction zone in which plasma over induction heating continuously smelt feed material(s) fed into the reduction zone. Slag and reduced metals (alloy) are discharged under supervision of the real-time controller.
Abstract:
A method of starting a smelting process in a smelting vessel includes heating frozen slag and forming molten slag and draining molten slag from a forehearth connection via a forehearth and establishing a clear flow path through the forehearth connection and thereafter hot starting the smelting process.
Abstract:
The Present invention provides an arc melting furnace apparatus and a method of controlling arc discharge, in which a melt material having been melted can be stirred efficiently, avoiding labor intensive work. The furnace is provided with a mold 3 having a recess 3a and provided in a melting chamber 2, a non-consumable discharge electrode 5 for heating and melting a melt material accommodated in the recess 3a, a power source unit 10 for supplying electric power to the non-consumable discharge electrode 5, and a control device 11 which controls the power source unit to control output intensity of the arc discharge from the non-consumable discharge electrode. The control device 11 controls output current from the power source unit 10 and its current frequency to vary the output intensity of the arc discharge from the non-consumable discharge electrode 5 and stir a molten metal resulting from heating and melting the melt material.
Abstract:
A method and apparatus for heating a metallic material held by a holder such as a crucible which is positioned on a base using an electric furnace. The electric furnace includes a sleeve, an electric heating element disposed on the inner surface of the sleeve, a removable lid for covering a top opening of the sleeve and at least one handle disposed on the outer surface of the sleeve for lifting and removing the sleeve from the base or placing the sleeve on the base. When the sleeve is placed on the base enclosing the crucible, the removable lid is placed on the top opening of the sleeve and an electric current is applied to the electric heating element. Heat generated by the electric heating element and retained in the furnace melts the material contained in the crucible.
Abstract:
The disclosure discloses a magnesium alloy material smelting device, comprising a furnace, a disc packing device, the disc packing device comprising a stirring shaft, a packing basket, a disc stirring head, the stirring shaft connected with a packing basket, the bottom of the packing basket connected with a disc stirring head, the disc stirring head comprising a plurality of stirring wings, the stirring wings connected with the packing basket and the stirring disc, the connecting ends of the stirring wings connected with each other, the stirring ends extending to the edge of the stirring disc, and the sidewall of the packing basket provided with a liquid passage hole; during the process of preparing and processing the magnesium alloy, the disc stirring head may accelerate the diffusion, the rotation of the disc stirring head may divide the melt into upper and lower layers, and the upper layer of the melt forms a solution vortex to accelerate the diffusion of the master alloy elements; the lower melt keeps relatively static to avoid the upturn of precipitated slag and shorten the precipitation time of slag, thereby improving the productivity.