摘要:
A tire having a radial carcass reinforcement, composed of at least one layer of metal reinforcing elements, the said tire comprising a crown reinforcement, itself topped radially by a tread, the said tread being joined to two beads via two sidewalls. The metal reinforcing elements of at least one layer of the carcass reinforcement are cords exhibiting, in the “permeability” test, a flow rate of less than 20 cm3/min and at least one layer of the carcass reinforcement is provided, on at least one face, with textile threads and at least the layer of elastomeric mixture, radially external to the bead wire and in contact with the latter, is an elastomeric mixture based on natural rubber or on synthetic polyisoprene and on a reinforcing filler conferring high cohesion.
摘要:
The environmental footprint of a tire for a construction plant vehicle is improved. To do so, the elastomer compounds derived from non-fossil resources represent a mass content greater than or equal to 65% of the total mass of the compounds of the tire, at least 75% of the total mass of the compounds of the tire is made up of elastomer compounds each of which has a viscoelastic loss, measured in terms of tan(δ), less than or equal to 0.065, and an electrical resistivity greater than or equal to 1E+10 ‘Ω·cm.
摘要:
A tire which is intended to bear heavy loads and the endurance of which is improved. The tire contains, in the bead region, at least one internal annular insert, the said insert having a rubber composition containing a polyisoprene elastomer, between 45 phr and 60 phr of a reinforcing filler containing from 43 to 55 phr of a reinforcing inorganic filler with a BET specific surface of between 155 and 185 m2/g, and a coupling agent for bonding the reinforcing inorganic filler to the elastomer.
摘要:
A tire for a civil engineering vehicle the endurance of which has been improved by the addition of an anti-creep layer (30) with a thickness E2 interposed between the airtight inner layer (20), with a thickness E1, and the reinforcer coating layer (46) of the carcass reinforcement (40), with a thickness E3. The thicknesses E1, E2 and E3, being measured in millimetres in a shoulder region forming the transition between the crown and each sidewall of the tire, satisfy the following equations: 2≤E1≤4; 6≤E2+E3 and E1/E2≥0.6. In addition, the viscoelastic loss P60 of the elastomeric mixture M2 of the anti-creep layer (30) is at most equal to 20%.