Abstract:
A honeycomb plugging apparatus that reduces slumping of the plugging patty. Honeycomb plugging apparatus includes a plugging head having an open-ended cavity formed from an end wall and a peripheral wall, and a support substructure provided in the open-ended cavity. Methods of plugging and manufacturing honeycomb bodies using the honeycomb plugging apparatus are provided, as are other aspects.
Abstract:
Various embodiments are directed to ceramic articles. The ceramic articles include a fired ceramic honeycomb body having a plurality of cell channels and at least one plug disposed in at least one cell channel of the fired ceramic honeycomb body. The at least one plug includes a refractory filler, an inorganic binder, and an organic binder. The refractory filler comprises particles having a d50 in the range from about 10 μm to about 40 μm, and a d90 less than about 110 μm.
Abstract:
A composition for applying to a honeycomb body includes a refractory filler, an organic binder, an inorganic binder, and a liquid vehicle, wherein the refractory filler, the particle size distribution of the refractory filler, the organic binder, and the inorganic binder are selected such that, when the composition is applied to plug a plurality of channels of the honeycomb body, the plug depth variability is reduced.
Abstract:
A composition for applying to a honeycomb body includes a refractory filler, an organic binder, an inorganic binder, and a liquid vehicle, wherein the refractory filler, the particle size distribution of the refractory filler, the organic binder, and the inorganic binder are selected such that, when the composition is applied to plug a plurality of channels of the honeycomb body, the plug depth variability is reduced.
Abstract:
A composition for applying to a honeycomb body includes a refractory filler, an organic binder, an inorganic binder, and a liquid vehicle, wherein the refractory filler, the particle size distribution of the refractory filler, the organic binder, and the inorganic binder are selected such that, when the composition is applied to plug a plurality of channels of the honeycomb body, the plug depth variability is reduced.
Abstract:
A composition for applying to a honeycomb body includes a refractory filler, an organic binder, an inorganic binder, and a liquid vehicle, wherein the refractory filler, the particle size distribution of the refractory filler, the organic binder, and the inorganic binder are selected such that, when the composition is applied to plug a plurality of channels of the honeycomb body, the plug depth variability is reduced.
Abstract:
A method of plugging a permeable porous cellular body (14) comprises: contacting the permeable porous cellular body (14) with a plugging mixture (100), the permeable porous cellular body (14) defining a plurality of channels (26); forcing the plugging mixture (100) into the plurality of channels (26) until a maximum, self-limiting, depth (114) of plugging mixture (100) is disposed within the plurality of channels (26); and maintaining a constant flow rate of the plugging mixture (100) into the plurality of channels until (26) a pressure on the plugging mixture (100) elevates to a predetermined pressure. Alternatively, the method comprises forcing the plugging mixture (100) into the plurality of channels (26) utilizing the application of a constant pressure over time until a maximum, self-limiting, depth (114) of the plugging mixture (100) is disposed within the plurality of channels (26); and maintaining the constant pressure applied to the plugging mixture (100) until flow of the plugging mixture (100) into the channels (26) decays from an initial flow rate to a predetermined flow rate.
Abstract:
A composition for applying to a honeycomb body includes a refractory filler, an organic binder, an inorganic binder, and a liquid vehicle, wherein the refractory filler, the particle size distribution of the refractory filler, the organic binder, and the inorganic binder are selected such that, when the composition is applied to plug a plurality of channels of the honeycomb body, the plug depth variability is reduced.
Abstract:
A method of plugging a permeable porous cellular body comprises: contacting the permeable porous cellular body with a plugging mixture, the permeable porous cellular body defining a plurality of channels; forcing the plugging mixture into the plurality of channels until a maximum, self-limiting, depth of plugging mixture is disposed within the plurality of channels; and maintaining a constant flow rate of the plugging mixture into the plurality of channels until a pressure on the plugging mixture elevates to a predetermined pressure. Alternatively, the method comprises forcing the plugging mixture into the plurality of channels utilizing the application of a constant pressure over time until a maximum, self-limiting, depth of the plugging mixture is disposed within the plurality of channels; and maintaining the constant pressure applied to the plugging mixture until flow of the plugging mixture into the channels decays from an initial flow rate to a predetermined flow rate.
Abstract:
A method of plugging a permeable porous cellular body (14) comprises: contacting the permeable porous cellular body (14) with a plugging mixture (100), the permeable porous cellular body (14) defining a plurality of channels (26); forcing the plugging mixture (100) into the plurality of channels (26) until a maximum, self-limiting, depth (114) of plugging mixture (100) is disposed within the plurality of channels (26); and maintaining a constant flow rate of the plugging mixture (100) into the plurality of channels until (26) a pressure on the plugging mixture (100) elevates to a predetermined pressure. Alternatively, the method comprises forcing the plugging mixture (100) into the plurality of channels (26) utilizing the application of a constant pressure over time until a maximum, self-limiting, depth (114) of the plugging mixture (100) is disposed within the plurality of channels (26); and maintaining the constant pressure applied to the plugging mixture (100) until flow of the plugging mixture (100) into the channels (26) decays from an initial flow rate to a predetermined flow rate.