Abstract:
A ceramic honeycomb body comprising a peripheral skin layer and a fiber extending around the outer periphery of a honeycomb core, the fiber embedded in the peripheral skin layer is described. A method of making a honeycomb body having a fiber extending around the outer periphery of a honeycomb core and embedded in the peripheral skin layer is also described.
Abstract:
A method of plugging a filter, comprising: positioning a mask layer over the filter comprising a plurality of intersecting walls, wherein the intersecting walls define at least one channel between the intersecting walls; perforating the mask layer proximate the channel to form a hole, wherein the hole extends around a portion of a perimeter of the channel such that the mask layer defines a flap extending over a center of the channel; passing a plugging mixture into the channel through the hole in the mask layer; and sintering the plugging mixture to form a plug within the channel.
Abstract:
Disclosed are ceramic bodies comprised of composite cordierite-mullite-aluminum magnesium titanate (CMAT) ceramic compositions having high cordierite-to-mullite ratio and methods for the manufacture of same.
Abstract:
Disclosed are ceramic bodies comprised of composite cordierite aluminum magnesium titanate ceramic compositions and methods for the manufacture of same.
Abstract:
Disclosed are ceramic bodies comprised of composite cordierite aluminum magnesium titanate ceramic compositions and methods for the manufacture of same.
Abstract:
The disclosure relates to ceramic-body-forming batch materials comprising at least one pore former and inorganic batch components comprising at least one silica source having a specified particle size distribution, methods of making ceramic bodies using the same, and ceramic bodies made in accordance with said methods. The disclosure additionally relates to methods for reducing pore size variability in ceramic bodies and/or reducing process variability in making ceramic bodies.
Abstract:
The disclosure relates to ceramic-body-forming batch materials comprising at least one pore former and inorganic batch components comprising at least one silica source having a specified particle size distribution, methods of making ceramic bodies using the same, and ceramic bodies made in accordance with said methods. The disclosure additionally relates to methods for reducing pore size variability in ceramic bodies and/or reducing process variability in making ceramic bodies.
Abstract:
A method of plugging a filter, comprising: positioning a mask layer over the filter comprising a plurality of intersecting walls, wherein the intersecting walls define at least one channel between the intersecting walls; perforating the mask layer proximate the channel to form a hole, wherein the hole extends around a portion of a perimeter of the channel such that the mask layer defines a flap extending over a center of the channel; passing a plugging mixture into the channel through the hole in the mask layer; and sintering the plugging mixture to form a plug within the channel.
Abstract:
A ceramic honeycomb body comprising a peripheral skin layer and a fiber extending around the outer periphery of a honeycomb core, the fiber embedded in the peripheral skin layer is described. A method of making a honeycomb body having a fiber extending around the outer periphery of a honeycomb core and embedded in the peripheral skin layer is also described.