Abstract:
A particulate filter having a honeycomb structure of a matrix of interconnected porous walls including inlet cells and outlet cells defining a plurality of inlet channels and outlet channels, respectively, wherein at least a portion of the outlet cells are larger than any of the inlet cells, and a cross-sectional shape of at least some of the outlet channels is rectangular. Honeycomb extrusion dies, honeycomb bodies, honeycomb structures, and methods of manufacture are described, as are other aspects.
Abstract:
A partial wall-flow filter, having a honeycomb structure including an inlet end, an outlet end, and parallel channels disposed and configured to flow fluid from the inlet end to the outlet end. The channels are defined by a plurality of intersecting porous walls. The partial wall-flow filter has a filtration region of channels plugged at the outlet end and a bypass region of unplugged channels. An N/S ratio of the filter material is less than or equal to about 0.5, less than or equal to about 0.3, less than or equal to about 0.1, or even 0, where N is a pressure drop difference induced by deep bed soot and S is a pressure drop change from 0 grams per liter (g/l) to about 5 g/l for a conditioned curve induced by cake bed soot, where N and S are measured on a full wall-flow filter of the filter material.
Abstract:
A particulate filter having a honeycomb structure of a matrix of interconnected porous walls including inlet cells and outlet cells defining a plurality of inlet channels and outlet channels, respectively, wherein at least a portion of the outlet cells are larger than any of the inlet cells, and a cross-sectional shape of at least some of the outlet channels is rectangular. Honeycomb extrusion dies, honeycomb bodies, honeycomb structures, and methods of manufacture are described, as are other aspects.
Abstract:
A partial wall-flow filter has an inlet end, an outlet end, and a plurality of parallel channels disposed and configured to flow fluid from the inlet end to the outlet end. The channels are defined by a plurality of porous walls. A first portion of the channels have a first hydraulic diameter Dh1, a second portion of the channels have a second hydraulic diameter Dh2 smaller than the first hydraulic diameter Dh1, and the ratio of Dh1:Dh2 is in the range of 1.1 to 1.6. At least a portion of channels having hydraulic diameter Dh1 are plugged at the outlet end, and channels having hydraulic diameter Dh2 are flow-through channels.
Abstract:
Systems and methods for controlling temperature and total hydrocarbon slip in an exhaust system are provided. Control systems can comprise an oxidation catalyst, a particulate filter, a fuel injector, and a processor for controlling a fuel injection based on an oxidation catalyst model. Example system includes a virtual sensor comprising a controller for calculating and providing the total hydrocarbon slip to subsystems for after-treatment management based on modeling the oxidation catalyst. Example methods for controlling the temperature and the total hydrocarbon slip in an exhaust system include the steps of providing an oxidation catalyst model, monitoring a condition of the exhaust system, calculating a hydrocarbon fuel injection flow rate and controlling a fuel injection. The example methods further include the steps of determining an error in the oxidation catalyst model based on the monitored condition and changing the oxidation catalyst model to reduce the error.
Abstract:
A partial wall-flow filter has an inlet end, an outlet end, and a plurality of parallel channels disposed and configured to flow fluid from the inlet end to the outlet end. The channels are defined by a plurality of porous walls. A first portion of the channels have a first hydraulic diameter Dh1, a second portion of the channels have a second hydraulic diameter Dh2 smaller than the first hydraulic diameter Dh1, and the ratio of Dh1:Dh2 is in the range of 1.1 to 1.6. At least a portion of channels having hydraulic diameter Dh1 are plugged at the outlet end, and channels having hydraulic diameter Dh2 are flow-through channels.
Abstract:
A particulate filter having a honeycomb structure of a matrix of interconnected porous walls including inlet cells and outlet cells defining a plurality of inlet channels and outlet channels, respectively, wherein at least a portion of the outlet cells are larger than any of the inlet cells, and a cross-sectional shape of at least some of the outlet channels is rectangular. Honeycomb extrusion dies, honeycomb bodies, honeycomb structures, and methods of manufacture are described, as are other aspects.
Abstract:
A particulate filter having a honeycomb structure of a matrix of interconnected porous walls including inlet cells and outlet cells defining a plurality of inlet channels and outlet channels, respectively, wherein at least a portion of the outlet cells are larger than any of the inlet cells, and a cross-sectional shape of at least some of the outlet channels is rectangular. Honeycomb extrusion dies, honeycomb bodies, honeycomb structures, and methods of manufacture are described, as are other aspects.
Abstract:
A particulate filter having a honeycomb structure of a matrix of interconnected porous walls including inlet cells and outlet cells defining a plurality of inlet channels and outlet channels, respectively, wherein at least a portion of the outlet cells are larger than any of the inlet cells, and a cross-sectional shape of at least some of the outlet channels is rectangular. Honeycomb extrusion dies, honeycomb bodies, honeycomb structures, and methods of manufacture are described, as are other aspects.
Abstract:
A particulate filter having a honeycomb structure of a matrix of interconnected porous walls including inlet cells and outlet cells defining a plurality of inlet channels and outlet channels, respectively, wherein at least a portion of the outlet cells are larger than any of the inlet cells, and a cross-sectional shape of at least some of the outlet channels is rectangular. Honeycomb extrusion dies, honeycomb bodies, honeycomb structures, and methods of manufacture are described, as are other aspects.