Abstract:
An exhaust manifold comprises a plurality of exhaust intake conduits structured to be fluidly coupled to an engine and receive exhaust gas from a corresponding cylinder of the engine. At least one exhaust intake conduit provides a reduction in an exhaust intake conduit cross-sectional area from an inlet to an outlet. A plurality of bends are each defined by a respective one of the exhaust intake conduit outlets. An exhaust intake manifold is fluidly coupled to the exhaust intake manifold and defines an exhaust intake manifold flow axis. Each of the plurality of bends is shaped so as to define n angle of approach of exhaust gas flowing therethrough. A first angle of approach of the first bend relative to the exhaust intake manifold flow axis is smaller than a second angle of approach of an inner second bend.
Abstract:
Heating of the charge air in an intake is provided by a working fluid that is circulated through the intake to exchange heat with the charge air. The heated charge air can be used in response to a thermal management condition for an exhaust gas produced by operation of the internal combustion engine.
Abstract:
An exhaust manifold comprises a plurality of exhaust intake conduits structured to be fluidly coupled to an engine and receive exhaust gas from a corresponding cylinder of the engine. At least one exhaust intake conduit provides a reduction in an exhaust intake conduit cross-sectional area from an inlet to an outlet. A plurality of bends are each defined by a respective one of the exhaust intake conduit outlets. An exhaust intake manifold is fluidly coupled to the exhaust intake manifold and defines an exhaust intake manifold flow axis. Each of the plurality of bends is shaped so as to define n angle of approach of exhaust gas flowing therethrough. A first angle of approach of the first bend relative to the exhaust intake manifold flow axis is smaller than a second angle of approach of an inner second bend.
Abstract:
Systems, apparatus, and methods are disclosed that include an internal combustion engine having a plurality of cylinders operable by a valve actuation mechanism. A cylinder deactivation operation is modified in response to determining a cyclical operation mode of the engine.
Abstract:
A cylinder head includes novel designs for undercuts, contours of the outer enclosure, coolant jackets, and other cavities within an outer enclosure of the cylinder head. The cylinder head design enables the reduction of weight of the head while maintaining structural integrity of the head, and improves control of temperatures in intake side and exhaust side zones of the heads to improve operational efficiency of the engine. A method is provided for additive manufacturing of the cylinder head including the disclosed designs.
Abstract:
An exhaust manifold comprises a plurality of exhaust intake conduits structured to be fluidly coupled to an engine and receive exhaust gas from a corresponding cylinder of the engine. At least one exhaust intake conduit provides a reduction in an exhaust intake conduit cross-sectional area from an inlet to an outlet. A plurality of bends are each defined by a respective one of the exhaust intake conduit outlets. An exhaust intake manifold is fluidly coupled to the exhaust intake manifold and defines an exhaust intake manifold flow axis. Each of the plurality of bends is shaped so as to define an angle of approach of exhaust gas flowing therethrough. A first angle of approach of the first bend relative to the exhaust intake manifold flow axis is smaller than a second angle of approach of an inner second bend.
Abstract:
A system and method for condensation management in a low-pressure loop EGR system are provided. The system includes an EGR condensation temperature module configured to determine an EGR condensation temperature of recirculated exhaust gas upstream of an EGR cooler and an EGR coolant temperature controller communicably coupled to the EGR condensation temperature module. The EGR coolant temperature controller provides EGR coolant to the EGR cooler at or above the EGR condensation temperature. The system also includes a charge air condensation temperature module configured to determine a charge air condensation temperature of charge air upstream of a charge air cooler and a charge air coolant temperature controller communicably coupled to the charge air condensation temperature module. The charge air coolant temperature controller provides charge air coolant to the charge air cooler at or above the charge air condensation temperature.
Abstract:
A system and method for condensation management in a low-pressure loop EGR system are provided. The system includes an EGR condensation temperature module configured to determine an EGR condensation temperature of recirculated exhaust gas upstream of an EGR cooler and an EGR coolant temperature controller communicably coupled to the EGR condensation temperature module. The EGR coolant temperature controller provides EGR coolant to the EGR cooler at or above the EGR condensation temperature. The system also includes a charge air condensation temperature module configured to determine a charge air condensation temperature of charge air upstream of a charge air cooler and a charge air coolant temperature controller communicably coupled to the charge air condensation temperature module. The charge air coolant temperature controller provides charge air coolant to the charge air cooler at or above the charge air condensation temperature.
Abstract:
A system and method for condensation management in a low-pressure loop EGR system are provided. The system includes an EGR condensation temperature module configured to determine an EGR condensation temperature of recirculated exhaust gas upstream of an EGR cooler and an EGR coolant temperature controller communicably coupled to the EGR condensation temperature module. The EGR coolant temperature controller provides EGR coolant to the EGR cooler at or above the EGR condensation temperature. The system also includes a charge air condensation temperature module configured to determine a charge air condensation temperature of charge air upstream of a charge air cooler and a charge air coolant temperature controller communicably coupled to the charge air condensation temperature module. The charge air coolant temperature controller provides charge air coolant to the charge air cooler at or above the charge air condensation temperature.
Abstract:
Heating of the charge air in an intake is provided by a working fluid that is circulated through the intake to exchange heat with the charge air. The heated charge air can be used in response to a thermal management condition for an exhaust gas produced by operation of the internal combustion engine.