Abstract:
A coating layer is used to encapsulate winding turns of an insulated conductive wire of a coil that is encapsulated by a magnetic material containing magnetic particles so as to prevent the magnetic particles from damaging the insulated insulating layer of the insulated conductive wire of the coil when the magnetic material is pressed to form a magnetic body, thereby avoiding unwanted short circuits that are caused by the magnetic particles and damaged portions of the insulated conductive wire.
Abstract:
A method of manufacturing a multi-layer coil includes steps of providing a substrate; forming a seed layer on the substrate; and plating the seed layer with N coil layers by N current densities according to N threshold ranges, so as to form the multi-layer coil on the substrate, wherein an i-th current density of the N current densities is lower than an (i+1)-th current density of the N current densities. A first coil layer of the N coil layers is plated on the seed layer by a first current density of the N current densities. When an aspect ratio of an i-th coil layer of the N coil layers is within an i-th threshold range of the N threshold ranges, an (i+1)-th coil layer of the N coil layers is plated on the i-th coil layer by the (i+1)-th current density.
Abstract:
A coating layer is used to encapsulate winding turns of an insulated conductive wire of a coil that is encapsulated by a magnetic material containing magnetic particles so as to prevent the magnetic particles from damaging the insulated insulating layer of the insulated conductive wire of the coil when the magnetic material is pressed to form a magnetic body, thereby avoiding unwanted short circuits that are caused by the magnetic particles and damaged portions of the insulated conductive wire.
Abstract:
A method of manufacturing a multi-layer coil includes steps of providing a substrate; forming a seed layer on the substrate; and plating the seed layer with N coil layers by N current densities according to N threshold ranges, so as to form the multi-layer coil on the substrate, wherein an i-th current density of the N current densities is lower than an (i+1)-th current density of the N current densities. A first coil layer of the N coil layers is plated on the seed layer by a first current density of the N current densities. When an aspect ratio of an i-th coil layer of the N coil layers is within an i-th threshold range of the N threshold ranges, an (i+1)-th coil layer of the N coil layers is plated on the i-th coil layer by the (i+1)-th current density.
Abstract:
A coating layer is formed on a coil made of an insulated conductive wire comprising a metal wire and an insulating layer encapsulating the metal layer, wherein the coating layer encapsulates at least one portion of the insulating layer of the insulated conductive wire so that a terminal part of the metal wire exposed from the insulating layer can be positioned firmly while going through an automatic soldering process for electrically connecting with an external circuit.